Generative Models for Active Vision

The active visual system comprises the visual cortices, cerebral attention networks, and oculomotor system. While fascinating in its own right, it is also an important model for sensorimotor networks in general. A prominent approach to studying this system is active inference—which assumes the brain makes use of an internal (generative) model to predict proprioceptive and visual input. This approach treats action as ensuring sensations conform to predictions (i.e., by moving the eyes) and posits that visual percepts are the consequence of updating predictions to conform to sensations. Under active inference, the challenge is to identify the form of the generative model that makes these predictions—and thus directs behavior. In this paper, we provide an overview of the generative models that the brain must employ to engage in active vision. This means specifying the processes that explain retinal cell activity and proprioceptive information from oculomotor muscle fibers. In addition to the mechanics of the eyes and retina, these processes include our choices about where to move our eyes. These decisions rest upon beliefs about salient locations, or the potential for information gain and belief-updating. A key theme of this paper is the relationship between “looking” and “seeing” under the brain's implicit generative model of the visual world.

[1]  H.-A. Loeliger,et al.  An introduction to factor graphs , 2004, IEEE Signal Process. Mag..

[2]  Andrea Tacchetti,et al.  Invariant Recognition Shapes Neural Representations of Visual Input. , 2018, Annual review of vision science.

[3]  N. Geschwind Disconnexion syndromes in animals and man. II. , 1965, Brain : a journal of neurology.

[4]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[5]  C. Kennard,et al.  Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. , 2001, Brain : a journal of neurology.

[6]  J. Büttner-Ennever,et al.  A cell group associated with vertical eye movements in the rostral mesencephalic reticular formation of the monkey , 1978, Brain Research.

[7]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  L. Johannsen,et al.  Time course of eye and head deviation in spatial neglect. , 2008, Neuropsychology.

[9]  Ramón Huerta,et al.  Reproducible sequence generation in random neural ensembles. , 2004, Physical review letters.

[10]  H. Karnath,et al.  The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. , 2002, Brain : a journal of neurology.

[11]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[12]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Karl J. Friston,et al.  Perceptual awareness and active inference , 2019, Neuroscience of consciousness.

[14]  H. Helmholtz The Facts in Perception , 1977 .

[15]  Antoine Lutti,et al.  Investigating the functions of subregions within anterior hippocampus , 2015, Cortex.

[16]  R. Wurtz,et al.  Interaction of the frontal eye field and superior colliculus for saccade generation. , 2001, Journal of neurophysiology.

[17]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[18]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[19]  Geoffrey Bird,et al.  Enhancing Social Ability by Stimulating Right Temporoparietal Junction Tdcs of Right Tpj , 2022 .

[20]  D. Marr,et al.  An Information Processing Approach to Understanding the Visual Cortex , 1980 .

[21]  S. Highstein,et al.  Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. I. Excitatory burst neurons , 1986, The Journal of comparative neurology.

[22]  K. Grill-Spector,et al.  The functional architecture of the ventral temporal cortex and its role in categorization , 2014, Nature Reviews Neuroscience.

[23]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[24]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[25]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[26]  Anil K. Seth,et al.  Explanatory Correlates of Consciousness: Theoretical and Computational Challenges , 2009, Cognitive Computation.

[27]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[28]  Philippe Kahane,et al.  Activations of deep convolutional neural networks are aligned with gamma band activity of human visual cortex , 2017, Communications Biology.

[29]  Karl J. Friston,et al.  Cerebral hierarchies: predictive processing, precision and the pulvinar , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  Karl J. Friston,et al.  Active inference on discrete state-spaces: A synthesis , 2020, Journal of mathematical psychology.

[31]  O. Blanke,et al.  Neuropsychology: Stimulating illusory own-body perceptions , 2002, Nature.

[32]  Karl J. Friston,et al.  Paradoxical lesions, plasticity and active inference , 2020, Brain communications.

[33]  G L Ruskell,et al.  The fine structure of human extraocular muscle spindles and their potential proprioceptive capacity. , 1989, Journal of anatomy.

[34]  D. F. Benson,et al.  Visual form agnosia , 2000 .

[35]  S.M. Harris,et al.  Information Processing , 1977, Nature.

[36]  M. D’Esposito,et al.  Topographical disorientation: a synthesis and taxonomy. , 1999, Brain : a journal of neurology.

[37]  Philipp Koehn,et al.  Cognitive Psychology , 1992, Ageing and Society.

[38]  Karl J. Friston,et al.  The Discrete and Continuous Brain: From Decisions to Movement—And Back Again , 2018, Neural Computation.

[39]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[40]  Rajesh P. N. Rao,et al.  Bayesian brain : probabilistic approaches to neural coding , 2006 .

[41]  Sui H Wong,et al.  How to interpret visual fields , 2015, Practical Neurology.

[42]  Karl J. Friston,et al.  ‘Seeing the Dark’: Grounding Phenomenal Transparency and Opacity in Precision Estimation for Active Inference , 2018, Front. Psychol..

[43]  Karl J. Friston,et al.  Active inference and the anatomy of oculomotion , 2018, Neuropsychologia.

[44]  H. T. Blair,et al.  Role of the Lateral Mammillary Nucleus in the Rat Head Direction Circuit A Combined Single Unit Recording and Lesion Study , 1998, Neuron.

[45]  Scott Cheng-Hsin Yang,et al.  Active sensing in the categorization of visual patterns , 2016, eLife.

[46]  H Shimazu,et al.  Disynaptic inhibition of omnipause neurons following electrical stimulation of the superior colliculus in alert cats. , 2001, Journal of neurophysiology.

[47]  Nira Dyn,et al.  Image Warping by Radial Basis Functions: Application to Facial Expressions , 1994, CVGIP Graph. Model. Image Process..

[48]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[49]  Kalanit Grill-Spector,et al.  The representation of object viewpoint in human visual cortex , 2009, NeuroImage.

[50]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[51]  P. Bartolomeo,et al.  Left unilateral neglect as a disconnection syndrome. , 2007, Cerebral cortex.

[52]  Karl J. Friston,et al.  The Anatomy of Inference: Generative Models and Brain Structure , 2018, Front. Comput. Neurosci..

[53]  Dana H. Ballard,et al.  The Hierarchical Evolution in Human Vision Modeling , 2021, Top. Cogn. Sci..

[54]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[55]  R. Shepard,et al.  CHRONOMETRIC STUDIES OF THE ROTATION OF MENTAL IMAGES , 1973 .

[56]  L. Jakobson,et al.  A neurological dissociation between perceiving objects and grasping them , 1991, Nature.

[57]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[58]  Karl J. Friston,et al.  Action understanding and active inference , 2011, Biological Cybernetics.

[59]  G. David Forney,et al.  Partition Functions of Normal Factor Graphs , 2011, ArXiv.

[60]  Karl J. Friston,et al.  The Computational Anatomy of Visual Neglect , 2017, Cerebral cortex.

[61]  R. L. de Valois,et al.  Cartesian and non-Cartesian responses in LGN, V1, and V2 cells , 2001, Visual Neuroscience.

[62]  Rick A Adams,et al.  Computational Psychiatry: towards a mathematically informed understanding of mental illness , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[63]  N. Geschwind Disconnexion syndromes in animals and man. I. , 1965, Brain : a journal of neurology.

[64]  Alexandre Bernardino,et al.  A review of log-polar imaging for visual perception in robotics , 2010, Robotics and Autonomous Systems.

[65]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[66]  Tim Verbelen,et al.  Deep Active Inference for Autonomous Robot Navigation , 2020, ICLR 2020.

[67]  Ehud Rivlin,et al.  Eye movements in chameleons are not truly independent – evidence from simultaneous monocular tracking of two targets , 2015, The Journal of Experimental Biology.

[68]  Markus Lappe,et al.  Visual Space Constructed by Saccade Motor Maps , 2016, Front. Hum. Neurosci..

[69]  Rosalyn Moran,et al.  A Meta-Bayesian Model of Intentional Visual Search , 2020, ArXiv.

[70]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[71]  D. Hassabis,et al.  Deconstructing episodic memory with construction , 2007, Trends in Cognitive Sciences.

[72]  Michael W. Spratling A Hierarchical Predictive Coding Model of Object Recognition in Natural Images , 2016, Cognitive Computation.

[73]  Brendan J. Frey,et al.  A Revolution: Belief Propagation in Graphs with Cycles , 1997, NIPS.

[74]  J. Hohwy The self-evidencing brain , 2016 .

[75]  Karl J. Friston,et al.  Active Inference: A Process Theory , 2017, Neural Computation.

[76]  Suzanne N. Haber,et al.  A neural network for information seeking , 2019, Nature Communications.

[77]  J. Taube Head direction cells recorded in the anterior thalamic nuclei of freely moving rats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  D. Benson,et al.  Visual form agnosia. A specific defect in visual discrimination. , 1969, Archives of neurology.

[79]  Visual Search as Active Inference , 2020 .

[80]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[81]  M. Botvinick,et al.  Planning as inference , 2012, Trends in Cognitive Sciences.

[82]  Karl J. Friston,et al.  Generalised Filtering , 2010 .

[83]  T. Hughes,et al.  The Man Who Mistook His Wife for a Hat , 1995, British Journal of Psychiatry.

[84]  Karl J. Friston,et al.  Active inference and epistemic value , 2015, Cognitive neuroscience.

[85]  Dimitri Ognibene,et al.  Ecological Active Vision: Four Bioinspired Principles to Integrate Bottom–Up and Adaptive Top–Down Attention Tested With a Simple Camera-Arm Robot , 2015, IEEE Transactions on Autonomous Mental Development.

[86]  S. Shamay-Tsoory,et al.  Neuroanatomical and neurochemical bases of theory of mind , 2011, Neuropsychologia.

[87]  Karl J. Friston,et al.  Human visual exploration reduces uncertainty about the sensed world , 2018, PloS one.

[88]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[89]  Karl J. Friston,et al.  Predictive coding explains binocular rivalry: An epistemological review , 2008, Cognition.

[90]  Thijs van de Laar,et al.  Simulating Active Inference Processes by Message Passing , 2019, Front. Robot. AI.

[91]  Robert H. Wurtz,et al.  Thalamic pathways for active vision , 2011, Trends in Cognitive Sciences.

[92]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[93]  D. Mackay The Epistemological Problem for Automata , 1956 .

[94]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[95]  J. W. Papez A PROPOSED MECHANISM OF EMOTION , 1937 .

[96]  Jeffrey S. Taube,et al.  Impaired Head Direction Cell Representation in the Anterodorsal Thalamus after Lesions of the Retrosplenial Cortex , 2010, The Journal of Neuroscience.

[97]  C. Lueck Loss of vision , 2010, Practical Neurology.

[98]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[99]  Mark R. Wilson,et al.  Exploring sensorimotor performance and user experience within a virtual reality golf putting simulator , 2019, Virtual Reality.

[100]  Yiannis Demiris,et al.  Towards Active Event Recognition , 2013, IJCAI.

[101]  John T. Gale,et al.  Basal Ganglia Neurons Dynamically Facilitate Exploration during Associative Learning , 2011, The Journal of Neuroscience.

[102]  Geoffrey E. Hinton,et al.  Dynamic Routing Between Capsules , 2017, NIPS.

[103]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[104]  J. Hegdé,et al.  A comparative study of shape representation in macaque visual areas v2 and v4. , 2007, Cerebral cortex.

[105]  Eleanor A. Maguire,et al.  Retrosplenial Cortex Codes for Permanent Landmarks , 2012, PloS one.

[106]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[107]  Mark R. Wilson,et al.  The effect of a virtual reality environment on gaze behaviour and motor skill learning , 2019, Psychology of Sport and Exercise.

[108]  M. Tarr,et al.  Mental rotation and orientation-dependence in shape recognition , 1989, Cognitive Psychology.

[109]  Karl J. Friston,et al.  Waves of prediction , 2019, PLoS biology.

[110]  S. Arun,et al.  Dynamics of 3D view invariance in monkey inferotemporal cortex , 2015, Journal of neurophysiology.

[111]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[112]  M. Posner,et al.  Inhibition of return : Neural basis and function , 1985 .

[113]  N. J. Gandhi,et al.  Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. , 1997, Journal of neurophysiology.

[114]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[115]  Karl J. Friston,et al.  Active inference under visuo-proprioceptive conflict: Simulation and empirical results , 2020, Scientific Reports.

[116]  Harry Shum,et al.  Review of image-based rendering techniques , 2000, Visual Communications and Image Processing.

[117]  R. Gregory,et al.  Perceptual illusions and brain models , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[118]  The Selected Writings of Hermann von Helmholtz , 1972 .

[119]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[120]  D. Whitteridge,et al.  Afferent impulses in the oculomotor nerve, from the extrinsic eye muscles , 1951, The Journal of physiology.

[121]  A. Adler DISINTEGRATION AND RESTORATION OF OPTIC RECOGNITION IN VISUAL AGNOSIA: ANALYSIS OF A CASE , 1944 .

[122]  Felix Blankenburg,et al.  Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment , 2017, NeuroImage.

[123]  John K. Tsotsos,et al.  A Computational Learning Theory of Active Object Recognition Under Uncertainty , 2012, International Journal of Computer Vision.

[124]  R. Schülke [Anatomy and physiology]. , 1968, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik.

[125]  Sungzoon Cho,et al.  Variational Autoencoder based Anomaly Detection using Reconstruction Probability , 2015 .

[126]  P. Bartolomeo,et al.  Brain networks of visuospatial attention and their disruption in visual neglect , 2012, Front. Hum. Neurosci..

[127]  Karl J. Friston,et al.  Free Energy, Precision and Learning: The Role of Cholinergic Neuromodulation , 2013, The Journal of Neuroscience.

[128]  Paul R. Martin,et al.  Analysis of Parvocellular and Magnocellular Visual Pathways in Human Retina , 2020, The Journal of Neuroscience.

[129]  Karl J. Friston,et al.  Scene Construction, Visual Foraging, and Active Inference , 2016, Front. Comput. Neurosci..

[130]  R. Gregory Perceptions as hypotheses. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[131]  Karl J. Friston,et al.  Active inference, eye movements and oculomotor delays , 2013, BMC Neuroscience.

[132]  H. Heinzl,et al.  Number and distribution of neuromuscular spindles in human extraocular muscles. , 1994, Investigative ophthalmology & visual science.

[133]  Karl J. Friston,et al.  A Factor Graph Description of Deep Temporal Active Inference , 2017, Front. Comput. Neurosci..

[134]  Julia E. Vogt,et al.  Interpretability and Explainability: A Machine Learning Zoo Mini-tour , 2020, ArXiv.

[135]  Koray Kavukcuoglu,et al.  Neural scene representation and rendering , 2018, Science.

[136]  Gregory Sharp,et al.  Image registration using radial basis functions with adaptive radius. , 2012, Medical physics.

[137]  Karl J. Friston,et al.  Deep temporal models and active inference , 2017, Neuroscience and biobehavioral reviews.

[138]  Marcello Ferro,et al.  Neurorobotics Original Research Article , 2022 .

[139]  Li Ping,et al.  The Factor Graph Approach to Model-Based Signal Processing , 2007, Proceedings of the IEEE.

[140]  Y. Saalmann,et al.  Functional and structural architecture of the human dorsal frontoparietal attention network , 2013, Proceedings of the National Academy of Sciences.

[141]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[142]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[143]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[144]  Ralph Adolphs,et al.  Fear, faces, and the human amygdala , 2008, Current Opinion in Neurobiology.

[145]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[146]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[147]  Karl J. Friston,et al.  The Projective Consciousness Model and Phenomenal Selfhood , 2018, Front. Psychol..

[148]  Russell A. Epstein,et al.  Anchoring the neural compass: Coding of local spatial reference frames in human medial parietal lobe , 2014, Nature Neuroscience.

[149]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[150]  A. Yuille,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Vision as Bayesian inference: analysis by synthesis? , 2022 .

[151]  Sarah R. Heilbronner,et al.  A neural network for information seeking , 2019, Nature Communications.

[152]  Karl J. Friston,et al.  The graphical brain: Belief propagation and active inference , 2017, Network Neuroscience.

[153]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[154]  D. Pandya,et al.  Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2005, Cerebral cortex.

[155]  Luiz Pessoa,et al.  Target visibility and visual awareness modulate amygdala responses to fearful faces. , 2006, Cerebral cortex.

[156]  Giovanni Pezzulo,et al.  Model-Based Approaches to Active Perception and Control , 2017, Entropy.

[157]  Karl J. Friston,et al.  The computational neurology of movement under active inference , 2021, Brain : a journal of neurology.

[158]  David I. Perrett,et al.  Neurophysiology of shape processing , 1993, Image Vis. Comput..

[159]  Karl J. Friston,et al.  Uncertainty, epistemics and active inference , 2017, Journal of The Royal Society Interface.

[160]  Ehud Zohary,et al.  Multiple Reference Frames for Saccadic Planning in the Human Parietal Cortex , 2011, The Journal of Neuroscience.

[161]  J. Hohwy Attention and Conscious Perception in the Hypothesis Testing Brain , 2012, Front. Psychology.

[162]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[163]  Nicole C. Rust,et al.  Selectivity and Tolerance (“Invariance”) Both Increase as Visual Information Propagates from Cortical Area V4 to IT , 2010, The Journal of Neuroscience.

[164]  Mary Hegarty,et al.  The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame , 2016, The Journal of Neuroscience.

[165]  Michael Unser,et al.  Deep Convolutional Neural Network for Inverse Problems in Imaging , 2016, IEEE Transactions on Image Processing.

[166]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[167]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[168]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[169]  Charles M. Bishop,et al.  Variational Message Passing , 2005, J. Mach. Learn. Res..

[170]  J. Rothwell,et al.  A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition , 2015, Nature Reviews Neuroscience.

[171]  Karl J. Friston,et al.  Deep active inference agents using Monte-Carlo methods , 2020, NeurIPS.

[172]  JH Maunsell,et al.  Does primate motion perception depend on the magnocellular pathway? , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[173]  Isabel Gauthier,et al.  BOLD Activity during Mental Rotation and Viewpoint-Dependent Object Recognition , 2002, Neuron.

[174]  Jürgen Schmidhuber,et al.  Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010) , 2010, IEEE Transactions on Autonomous Mental Development.

[175]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[176]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[177]  Bert de Vries,et al.  Simulating Active Inference Processes by Message Passing , 2019, Frontiers Robotics AI.

[178]  A. McSpadden A mathematical model of human saccadic eye movement , 1998 .

[179]  Justin Dauwels,et al.  On Variational Message Passing on Factor Graphs , 2007, 2007 IEEE International Symposium on Information Theory.

[180]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[181]  Mindy F Levin,et al.  The equilibrium-point hypothesis--past, present and future. , 2009, Advances in experimental medicine and biology.

[182]  J. Greene Apraxia, agnosias, and higher visual function abnormalities , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[183]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[184]  K. Akert,et al.  Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique , 1977, The Journal of comparative neurology.

[185]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[186]  Alexander Tschantz,et al.  Scaling Active Inference , 2019, 2020 International Joint Conference on Neural Networks (IJCNN).

[187]  N. Logothetis,et al.  Multistable phenomena: changing views in perception , 1999, Trends in Cognitive Sciences.

[188]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[189]  Jeffrey Taube,et al.  Head direction cells , 2009, Scholarpedia.

[190]  P. Daniel,et al.  Muscle spindles in human extrinsic eye muscles. , 1949, Brain : a journal of neurology.

[191]  Papez Jw A proposed mechanism of emotion. 1937. , 1995 .