Robust subspace estimation via low-rank and sparse decomposition and applications in computer vision

Recent advances in robust subspace estimation have made dimensionality reduction and noise and outlier suppression an area of interest for research, along with continuous improvements in computer vision applications. Due to the nature of image and video signals that need a high dimensional representation, often storage, processing, transmission, and analysis of such signals is a difficult task. It is therefore desirable to obtain a low-dimensional representation for such signals, and at the same time correct for corruptions, errors, and outliers, so that the signals could be readily used for later processing. Major recent advances in low-rank modelling in this context were initiated by the work of Candès et al. [17] where the authors provided a solution for the long-standing problem of decomposing a matrix into low-rank and sparse components in a Robust Principal Component Analysis (RPCA) framework. However, for computer vision applications RPCA is often too complex, and/or may not yield desirable results. The low-rank component obtained by the RPCA has usually an unnecessarily high rank, while in certain tasks lower dimensional representations are required. The RPCA has the ability to robustly estimate noise and outliers and separate them from the low-rank component, by a sparse part. But, it has no mechanism of providing an insight into the structure of the sparse solution, nor a way to further decompose the sparse part into a random noise and a structured sparse component that would be advantageous in many computer vision tasks. As videos signals are usually captured by a camera that is moving, obtaining a low-rank component by RPCA becomes impossible. In this thesis, novel Approximated RPCA algorithms are presented, targeting different shortcomings of the RPCA. The Approximated RPCA was analysed to identify the most time consuming RPCA solutions, and replace them with simpler yet tractable alternative solutions. The proposed method is able to obtain the exact desired rank for the low-rank component while estimating a global transformation to describe camera-induced motion. Furthermore, it is able to

[1]  C. Pan,et al.  Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .

[2]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[3]  Roberto Tron RenVidal A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007 .

[4]  Julien Mairal,et al.  Network Flow Algorithms for Structured Sparsity , 2010, NIPS.

[5]  Ebroul Izquierdo,et al.  UHD Video Super-Resolution Using Low-Rank and Sparse Decomposition , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[6]  Kenichi Kanatani,et al.  Multi-Stage Unsupervised Learning for Multi-Body Motion Segmentation , 2004, IEICE Trans. Inf. Syst..

[7]  Ebroul Izquierdo,et al.  Approximated RPCA for fast and efficient recovery of corrupted and linearly correlated images and video frames , 2015, 2015 International Conference on Systems, Signals and Image Processing (IWSSIP).

[8]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[9]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[10]  Rob Nicholls High-efficiency video coding: a future for ultra-high definition television? , 2013 .

[11]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[12]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[13]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[14]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[15]  Christos Boutsidis,et al.  An improved approximation algorithm for the column subset selection problem , 2008, SODA.

[16]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[17]  R. Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications. , 2013, IEEE transactions on pattern analysis and machine intelligence.

[18]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Shinichi Nakajima,et al.  Sparse Additive Matrix Factorization for Robust PCA and Its Generalization , 2012, ACML.

[20]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[21]  Ebroul Izquierdo,et al.  Efficient background subtraction with low-rank and sparse matrix decomposition , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[22]  Ebroul Izquierdo,et al.  Approximated Robust Principal Component Analysis for Improved General Scene Background Subtraction , 2016, ArXiv.

[23]  Volkan Cevher,et al.  Sparse Signal Recovery Using Markov Random Fields , 2008, NIPS.

[24]  René Vidal,et al.  Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework , 2016, IEEE Transactions on Image Processing.

[25]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[27]  Borko Furht,et al.  Neural Network Approach to Background Modeling for Video Object Segmentation , 2007, IEEE Transactions on Neural Networks.

[28]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[29]  Zhouchen Lin,et al.  Analysis and Improvement of Low Rank Representation for Subspace segmentation , 2010, ArXiv.

[30]  Chandrika Kamath,et al.  Robust techniques for background subtraction in urban traffic video , 2004, IS&T/SPIE Electronic Imaging.

[31]  Guillaume-Alexandre Bilodeau,et al.  SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity , 2015, IEEE Transactions on Image Processing.

[32]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[33]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[34]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[35]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[36]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[37]  René Vidal,et al.  Motion Segmentation in the Presence of Outlying, Incomplete, or Corrupted Trajectories , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Salehe Erfanian Ebadi,et al.  Multiple subspaces separation in case of camera motion , 2017, ICDP.

[39]  Xiaoou Tang,et al.  Image Super-Resolution Using Deep Convolutional Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Thierry Bouwmans,et al.  Foreground Detection via Robust Low Rank Matrix Decomposition Including Spatio-Temporal Constraint , 2012, ACCV Workshops.

[41]  Lawrence Carin,et al.  Bayesian Robust Principal Component Analysis , 2011, IEEE Transactions on Image Processing.

[42]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..

[43]  Thierry Bouwmans,et al.  Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance , 2014, Comput. Vis. Image Underst..

[44]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[45]  Dit-Yan Yeung,et al.  Bayesian Robust Matrix Factorization for Image and Video Processing , 2013, 2013 IEEE International Conference on Computer Vision.

[46]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Mubarak Shah,et al.  Action recognition in videos acquired by a moving camera using motion decomposition of Lagrangian particle trajectories , 2011, 2011 International Conference on Computer Vision.

[48]  T. Xiang Background Subtraction with Dirichlet Process Mixture Models , 2013 .

[49]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Thierry Bouwmans,et al.  Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey , 2011 .

[51]  Gonzalo Mateos,et al.  Robust PCA as Bilinear Decomposition With Outlier-Sparsity Regularization , 2011, IEEE Transactions on Signal Processing.

[52]  Wei Zhang,et al.  The SJTU 4K video sequence dataset , 2013, 2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX).

[53]  Rainer Stiefelhagen,et al.  Improving foreground segmentations with probabilistic superpixel Markov random fields , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[54]  Sanjoy Dasgupta,et al.  A Generalization of Principal Components Analysis to the Exponential Family , 2001, NIPS.

[55]  Xin Liu,et al.  Background subtraction based on low-rank and structured sparse decomposition. , 2015, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[56]  Soon Ki Jung,et al.  Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset , 2015, Comput. Sci. Rev..

[57]  Xiaoxiao Li,et al.  Semantic Image Segmentation via Deep Parsing Network , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[58]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[60]  Daniel Rueckert,et al.  Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[62]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[63]  Namrata Vaswani,et al.  Recursive sparse recovery in large but correlated noise , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[64]  René Vidal,et al.  Motion Segmentation with Missing Data Using PowerFactorization and GPCA , 2004, CVPR.

[65]  Hasan Sajid,et al.  Background subtraction for static & moving camera , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[66]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[67]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[68]  Wei Xue,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Probabilistic Multi-Label Classification with Sparse Feature Learning , 2022 .

[69]  Rick Chartrand,et al.  Nonconvex Splitting for Regularized Low-Rank + Sparse Decomposition , 2012, IEEE Transactions on Signal Processing.

[70]  Guillaume-Alexandre Bilodeau,et al.  A Self-Adjusting Approach to Change Detection Based on Background Word Consensus , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[71]  Ebroul Izquierdo,et al.  Foreground Segmentation via Dynamic Tree-Structured Sparse RPCA , 2016, ECCV.

[72]  Allen Y. Yang,et al.  Estimation of Subspace Arrangements with Applications in Modeling and Segmenting Mixed Data , 2008, SIAM Rev..

[73]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[74]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[75]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[76]  Hasan Sajid,et al.  Universal Multimode Background Subtraction , 2017, IEEE Transactions on Image Processing.

[77]  Yin Zhang,et al.  An Alternating Direction Algorithm for Nonnegative Matrix Factorization , 2010 .

[78]  Loong Fah Cheong,et al.  Block-Sparse RPCA for Salient Motion Detection , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[80]  Xiaoming Yuan,et al.  Sparse and low-rank matrix decomposition via alternating direction method , 2013 .

[81]  Dacheng Tao,et al.  Shifted Subspaces Tracking on Sparse Outlier for Motion Segmentation , 2013, IJCAI.

[82]  Yi Ma,et al.  Robust and Practical Face Recognition via Structured Sparsity , 2012, ECCV.

[83]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[84]  Dimitris Papailiopoulos,et al.  Provable deterministic leverage score sampling , 2014, KDD.

[85]  Stefano Soatto,et al.  Joint data alignment up to (lossy) transformations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[86]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[87]  Zhixun Su,et al.  Solving Principal Component Pursuit in Linear Time via $l_1$ Filtering , 2011, ArXiv.

[88]  René Vidal,et al.  Multiframe Motion Segmentation with Missing Data Using PowerFactorization and GPCA , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[89]  Guangliang Chen,et al.  Spectral Curvature Clustering (SCC) , 2009, International Journal of Computer Vision.

[90]  Hong Zhang,et al.  High efficiency video coding (HEVC) based screen content coding , 2013 .

[91]  Yonina C. Eldar,et al.  Dictionary Optimization for Block-Sparse Representations , 2010, IEEE Transactions on Signal Processing.

[92]  Feiping Nie,et al.  Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.

[93]  Marc Pollefeys,et al.  A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate , 2006, ECCV.

[94]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[95]  Mubarak Shah,et al.  Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications , 2014 .

[96]  Ian T. Jolliffe,et al.  Discarding Variables in a Principal Component Analysis. I: Artificial Data , 1972 .

[97]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[98]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[99]  Qionghai Dai,et al.  Low-Rank Structure Learning via Nonconvex Heuristic Recovery , 2010, IEEE Transactions on Neural Networks and Learning Systems.

[100]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[101]  Wen Gao,et al.  Background Subtraction via generalized fused lasso foreground modeling , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Rubén Heras Evangelio,et al.  Complementary background models for the detection of static and moving objects in crowded environments , 2011, 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[103]  Itu-T and Iso Iec Jtc Advanced video coding for generic audiovisual services , 2010 .

[104]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[105]  Allen Y. Yang,et al.  Robust Algebraic Segmentation of Mixed Rigid-Body and Planar Motions from Two Views , 2010, International Journal of Computer Vision.

[106]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[107]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[108]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[109]  Babak Hassibi,et al.  On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements , 2008, IEEE Transactions on Signal Processing.

[110]  René Vidal,et al.  Segmenting Motions of Different Types by Unsupervised Manifold Clustering , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[111]  Gary J. Sullivan,et al.  Overview of the High Efficiency Video Coding (HEVC) Standard , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[112]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[113]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[114]  Gilad Lerman,et al.  Robust Stochastic Principal Component Analysis , 2014, AISTATS.

[115]  Zi Huang,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence ℓ2,1-Norm Regularized Discriminative Feature Selection for Unsupervised Learning , 2022 .

[116]  Jian Dong,et al.  Accelerated low-rank visual recovery by random projection , 2011, CVPR 2011.

[117]  Thierry Bouwmans,et al.  Background Modeling and Foreground Detection for Video Surveillance , 2014 .

[118]  Gilad Lerman,et al.  Hybrid Linear Modeling via Local Best-Fit Flats , 2010, International Journal of Computer Vision.

[119]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[120]  J. Nathan Kutz,et al.  Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video , 2014, ArXiv.

[121]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[122]  Francis R. Bach,et al.  Structured Variable Selection with Sparsity-Inducing Norms , 2009, J. Mach. Learn. Res..

[123]  Y. Weiss,et al.  Multibody factorization with uncertainty and missing data using the EM algorithm , 2004, CVPR 2004.

[124]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[125]  Rubén Heras Evangelio,et al.  Splitting Gaussians in Mixture Models , 2012, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance.

[126]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[127]  Martin Brown,et al.  Subset Selection Algorithms: Randomized vs. Deterministic , 2010 .

[128]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[129]  R. Hartley,et al.  PowerFactorization : 3D reconstruction with missing or uncertain data , 2003 .

[130]  Thierry Bouwmans,et al.  Foreground detection based on low-rank and block-sparse matrix decomposition , 2012, 2012 19th IEEE International Conference on Image Processing.

[131]  Thomas Sikora,et al.  Comparison of static background segmentation methods , 2005, Visual Communications and Image Processing.

[132]  Soon Ki Jung,et al.  Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured Foreground Constraints , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[133]  Shuicheng Yan,et al.  Robust Subspace Segmentation with Block-Diagonal Prior , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[134]  Hideitsu Hino,et al.  Multi-frame image super resolution based on sparse coding , 2015, Neural Networks.

[135]  Jieping Ye,et al.  Multi-Task Feature Learning Via Efficient l2, 1-Norm Minimization , 2009, UAI.

[136]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[137]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[138]  John Wright,et al.  RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[139]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[140]  Mubarak Shah,et al.  Robust Subspace Estimation Using Low-Rank Optimization , 2014, The International Series in Video Computing.

[141]  Shiqian Ma,et al.  Algorithms for sparse and low-rank optimization: convergence, complexity and applications , 2011 .

[142]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[143]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[144]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[145]  Y. Zhang,et al.  Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization , 2014, Optim. Methods Softw..

[146]  Qi Tian,et al.  Foreground object detection from videos containing complex background , 2003, MULTIMEDIA '03.

[147]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[148]  Aggelos K. Katsaggelos,et al.  Variational Bayesian Methods For Multimedia Problems , 2014, IEEE Transactions on Multimedia.

[149]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[150]  Ebroul Izquierdo,et al.  Dynamic tree-structured sparse RPCA via column subset selection for background modeling and foreground detection , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[151]  El-hadi Zahzah,et al.  Robust Principal Component Analysis Based on Low-Rank and Block-Sparse Matrix Decomposition , 2016 .

[152]  Marc Van Droogenbroeck,et al.  ViBE: A powerful random technique to estimate the background in video sequences , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[153]  Hossein Mobahi,et al.  Toward a Practical Face Recognition System: Robust Alignment and Illumination by Sparse Representation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[154]  Vivienne Sze,et al.  FAST: Free Adaptive Super-Resolution via Transfer for Compressed Videos , 2016, ArXiv.

[155]  Michael I. Jordan,et al.  Multi-task feature selection , 2006 .

[156]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[157]  Jieping Ye,et al.  Moreau-Yosida Regularization for Grouped Tree Structure Learning , 2010, NIPS.

[158]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[159]  René Vidal,et al.  A closed form solution to robust subspace estimation and clustering , 2011, CVPR 2011.

[160]  Junzhou Huang,et al.  Learning with dynamic group sparsity , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[161]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[162]  Gerhard Rigoll,et al.  Background segmentation with feedback: The Pixel-Based Adaptive Segmenter , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[163]  Junfeng Yang,et al.  Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization , 2012, Math. Comput..

[164]  S. Muthukrishnan,et al.  Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..

[165]  G. Giannakis,et al.  Sparsity control for robust principal component analysis , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[166]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[167]  James Theiler,et al.  Local principal component pursuit for nonlinear datasets , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).