Derivatives and inverse of cascaded linear+nonlinear neural models

In vision science, cascades of Linear+Nonlinear transforms are very successful in modeling a number of perceptual experiences. However, the conventional literature is usually too focused on only describing the forward input-output transform. Instead, in this work we present the mathematics of such cascades beyond the forward transform, namely the Jacobian matrices and the inverse. The fundamental reason for this analytical treatment is that it offers useful analytical insight into the psychophysics, the physiology, and the function of the visual system. For instance, we show how the trends of the sensitivity (volume of the discrimination regions) and the adaptation of the receptive fields can be identified in the expression of the Jacobian w.r.t. the stimulus. This matrix also tells us which regions of the stimulus space are encoded more efficiently in multi-information terms. The Jacobian w.r.t. the parameters shows which aspects of the model have bigger impact in the response, and hence their relative relevance. The analytic inverse implies conditions for the response and model parameters to ensure appropriate decoding. From the experimental and applied perspective, (a) the Jacobian w.r.t. the stimulus is necessary in new experimental methods based on the synthesis of visual stimuli with interesting geometrical properties, (b) the Jacobian matrices w.r.t. the parameters are convenient to learn the model from classical experiments or alternative goal optimization, and (c) the inverse is a promising model-based alternative to blind machine-learning methods for neural decoding that do not include meaningful biological information. The theory is checked by building and testing a vision model that actually follows a modular Linear+Nonlinear program. Our illustrative derivable and invertible model consists of a cascade of modules that account for brightness, contrast, energy masking, and wavelet masking. To stress the generality of this modular setting we show examples where some of the canonical Divisive Normalization modules are substituted by equivalent modules such as the Wilson-Cowan interaction model (at the V1 cortex) or a tone-mapping model (at the retina).

[1]  Mark D. Fairchild,et al.  Color Appearance Models , 1997, Computer Vision, A Reference Guide.

[2]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1992 .

[3]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[4]  A J Ahumada,et al.  Putting the visual system noise back in the picture. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[5]  J. Malo,et al.  V1 non-linear properties emerge from local-to-global non-linear ICA , 2006, Network.

[6]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[7]  Eero P. Simoncelli,et al.  Nonlinear image representation for efficient perceptual coding , 2006, IEEE Transactions on Image Processing.

[8]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[9]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[10]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[11]  Mark A. Georgeson,et al.  Fixed or variable noise in contrast discrimination? The jury’s still out… , 2006, Vision Research.

[12]  M. Bertalmío,et al.  Appropriate kernels for Divisive Normalization explained by Wilson-Cowan equations , 2018, 1804.05964.

[13]  Francesc J. Ferri,et al.  Perceptual feedback in multigrid motion estimation using an improved DCT quantization , 2001, IEEE Trans. Image Process..

[14]  Michael J. Berry,et al.  High Accuracy Decoding of Dynamical Motion from a Large Retinal Population , 2014, PLoS Comput. Biol..

[15]  Marcelo Bertalmío,et al.  The Wilson-Cowan model describes Contrast Response and Subjective Distortion , 2017 .

[16]  G. Legge A power law for contrast discrimination , 1981, Vision Research.

[17]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[18]  Hans-Peter Seidel,et al.  A perceptual framework for contrast processing of high dynamic range images , 2006, TAP.

[19]  David Kane,et al.  System gamma as a function of image- and monitor-dynamic range. , 2016, Journal of vision.

[20]  F. Rieke,et al.  Nonlinear spatial encoding by retinal ganglion cells: when 1 + 1 ≠ 2 , 2011, The Journal of general physiology.

[21]  David H. Brainard,et al.  The Relation Between Color Discrimination and Color Constancy: When Is Optimal Adaptation Task Dependent? , 2007, Neural Computation.

[22]  J A Solomon,et al.  Model of visual contrast gain control and pattern masking. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Eero P. Simoncelli,et al.  Maximum differentiation (MAD) competition: a methodology for comparing computational models of perceptual quantities. , 2008, Journal of vision.

[24]  T.,et al.  Shiftable Multi-scale TransformsEero , 1992 .

[25]  Valero Laparra,et al.  End-to-end Optimized Image Compression , 2016, ICLR.

[26]  R. L. Valois Color Vision Mechanisms in the Monkey , 1960 .

[27]  Valero Laparra,et al.  Perceptually Optimized Image Rendering , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  N. Graham Visual Pattern Analyzers , 1989 .

[29]  Didier Le Gall,et al.  MPEG: a video compression standard for multimedia applications , 1991, CACM.

[30]  Donald C Hood,et al.  The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina. , 2002, Journal of vision.

[31]  Valero Laparra,et al.  Psychophysically Tuned Divisive Normalization Approximately Factorizes the PDF of Natural Images , 2010, Neural Computation.

[32]  Erhan Bilal,et al.  Improving Breast Cancer Survival Analysis through Competition-Based Multidimensional Modeling , 2013, PLoS Comput. Biol..

[33]  H. Barlow Vision: A theory about the functional role and synaptic mechanism of visual after-effects , 1991 .

[34]  G B Stanley,et al.  Reconstruction of Natural Scenes from Ensemble Responses in the Lateral Geniculate Nucleus , 1999, The Journal of Neuroscience.

[35]  H. Wilson,et al.  Spatial frequency adaptation and contrast gain control , 1993, Vision Research.

[36]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[37]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[38]  Valero Laparra,et al.  Nonlinearities and Adaptation of Color Vision from Sequential Principal Curves Analysis , 2016, Neural Computation.

[39]  Michael S. Landy,et al.  Noise in the Visual System May Be Early , 1991 .

[40]  Patrick C. Teo,et al.  Perceptual image distortion , 1994, Electronic Imaging.

[41]  Andrew B. Watson,et al.  Digital images and human vision , 1993 .

[42]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[43]  Edoardo Provenzi,et al.  A Perceptually Inspired Variational Framework for Color Enhancement , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[45]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[46]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[47]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[48]  Jesús Malo,et al.  Video quality measures based on the standard spatial observer , 2002, Proceedings. International Conference on Image Processing.

[49]  Valero Laparra,et al.  Eigen-Distortions of Hierarchical Representations , 2017, NIPS.

[50]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[51]  Eero P. Simoncelli,et al.  Geometrical and statistical properties of vision models obtained via maximum differentiation , 2015, Electronic Imaging.

[52]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[53]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[54]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[55]  Fred Rieke,et al.  The spatial structure of a nonlinear receptive field , 2012, Nature Neuroscience.

[56]  Andrea Vedaldi,et al.  Understanding deep image representations by inverting them , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  James A. Bednar,et al.  Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes , 2016, PLoS Comput. Biol..

[58]  Francesc J. Ferri,et al.  Regularization operators for natural images based on nonlinear perception models , 2006, IEEE Transactions on Image Processing.

[59]  Eero P. Simoncelli,et al.  A Convolutional Subunit Model for Neuronal Responses in Macaque V1 , 2015, The Journal of Neuroscience.

[60]  Jonathan Winawer,et al.  A Two-Stage Cascade Model of BOLD Responses in Human Visual Cortex , 2013, PLoS Comput. Biol..

[61]  D. L. Macadam,et al.  Visual sensitivities to combined chromaticity and luminance differences. , 1949, Journal of the Optical Society of America.

[62]  Donald I. A. MacLeod,et al.  The pleistochrome: optimal opponent codes for natural colours , 2003 .

[63]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[64]  Nikolay N. Ponomarenko,et al.  Color image database for evaluation of image quality metrics , 2008, 2008 IEEE 10th Workshop on Multimedia Signal Processing.

[65]  Zhou Wang,et al.  Group MAD Competition? A New Methodology to Compare Objective Image Quality Models , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[66]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[67]  Alexander S. Ecker,et al.  Neural system identification for large populations separating "what" and "where" , 2017, NIPS.

[68]  Robert Shapley,et al.  Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. , 2002, Journal of vision.

[69]  Pascual Capilla,et al.  Corresponding-pair procedure: a new approach to simulation of dichromatic color perception. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  David Kane,et al.  The Maximum Differentiation competition depends on the Viewing Conditions , 2016 .

[71]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[72]  Marcelo Bertalmío,et al.  Optimized Tone Curve for In-Camera Image Processing , 2016, IQSP.

[73]  Francesc J. Ferri,et al.  The role of perceptual contrast non-linearities in image transform quantization , 2000, Image Vis. Comput..

[74]  A. Hyvärinen,et al.  Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images , 2014, PloS one.

[75]  Kedarnath P. Vilankar,et al.  Conjectures regarding the nonlinear geometry of visual neurons , 2016, Vision Research.

[76]  S. Laughlin,et al.  Matching Coding to Scenes to Enhance Efficiency , 1983 .

[77]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[78]  M. Studený,et al.  The Multiinformation Function as a Tool for Measuring Stochastic Dependence , 1998, Learning in Graphical Models.

[79]  Marcelo Bertalmío,et al.  From image processing to computational neuroscience: a neural model based on histogram equalization , 2014, Front. Comput. Neurosci..

[80]  A. Murat Tekalp,et al.  Digital Video Processing , 1995 .

[81]  Pascual Capilla,et al.  Image quality metric based on multidimensional contrast perception models , 1999 .

[82]  Yuwei Cui,et al.  Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs , 2013, PLoS Comput. Biol..

[83]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[84]  Valero Laparra,et al.  Image Denoising with Kernels Based on Natural Image Relations , 2010, J. Mach. Learn. Res..

[85]  M. Carandini,et al.  Normalization as a canonical neural computation , 2013, Nature Reviews Neuroscience.

[86]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[87]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[88]  D. Sakrison,et al.  On the Role of the Observer and a Distortion Measure in Image Transmission , 1977, IEEE Trans. Commun..

[89]  T. Minka Old and New Matrix Algebra Useful for Statistics , 2000 .

[90]  Jesús Malo,et al.  Linear transform for simultaneous diagonalization of covariance and perceptual metric matrix in image coding , 2003, Pattern Recognit..

[91]  M. Spivak Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus , 2019 .

[92]  Francesc J. Ferri,et al.  Non-linear Invertible Representation for Joint Statistical and Perceptual Feature Decorrelation , 2000, SSPR/SPR.

[93]  Alan A. Stocker,et al.  Is the Homunculus Aware of Sensory Adaptation? , 2009, Neural Computation.

[94]  Stefano Panzeri,et al.  Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains , 2016, PLoS Comput. Biol..

[95]  Heiko H Schütt,et al.  An image-computable psychophysical spatial vision model. , 2017, Journal of vision.

[96]  Valero Laparra,et al.  Visual aftereffects and sensory nonlinearities from a single statistical framework , 2015, Front. Hum. Neurosci..

[97]  Eli Brenner,et al.  Structure learning and the Occam's razor principle: a new view of human function acquisition , 2014, Front. Comput. Neurosci..

[98]  Marcelo Bertalmío,et al.  Automatic, Viewing-Condition Dependent Contrast Grading based on Perceptual Models , 2016 .

[99]  Valero Laparra,et al.  Predicting perceptual distortion sensitivity with gain control models of LGN , 2017 .

[100]  J. B. Demb,et al.  Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells , 2016, bioRxiv.

[101]  Inés Samengo,et al.  Derivation of Human Chromatic Discrimination Ability from an Information-Theoretical Notion of Distance in Color Space , 2016, Neural Computation.

[102]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[103]  Valero Laparra,et al.  Divisive normalization image quality metric revisited. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[104]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[105]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[106]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[107]  O. Schwartz,et al.  The impact on midlevel vision of statistically optimal divisive normalization in V1. , 2013, Journal of vision.

[108]  J. Cowan,et al.  Wilson–Cowan Equations for Neocortical Dynamics , 2016, Journal of mathematical neuroscience.

[109]  Javier Vazquez-Corral,et al.  A tone mapping operator based on neural and psychophysical models of visual perception , 2015, Electronic Imaging.

[110]  J. Franklin,et al.  The elements of statistical learning: data mining, inference and prediction , 2005 .

[111]  Zhou Wang,et al.  Modern Image Quality Assessment , 2006, Modern Image Quality Assessment.

[112]  Alan C. Bovik,et al.  Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures , 2009, IEEE Signal Processing Magazine.

[113]  Leon A. Gatys,et al.  A Neural Algorithm of Artistic Style , 2015, ArXiv.

[114]  Eero P. Simoncelli,et al.  Metamers of the ventral stream , 2011, Nature Neuroscience.

[115]  Masa-aki Sato,et al.  Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders , 2008, Neuron.

[116]  James M. Hillis,et al.  Do common mechanisms of adaptation mediate color discrimination and appearance? Contrast adaptation. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[117]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[118]  Michael H. Brill,et al.  Color appearance models , 1998 .

[119]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[120]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.