Synaptic and neurochemical characterization of parallel pathways to the cytochrome oxidase blobs of primate visual cortex

The primary visual cortex (V1) of primates is unique in that it is both the recipient of visual signals, arriving via parallel pathways (magnocellular [M], parvocellular [P], and koniocellular [K]) from the thalamus, and the source of several output streams to higher order visual areas. Within this scheme, output compartments of V1, such as the cytochrome oxidase‐ (CO) rich blobs in cortical layer III, synthesize new output pathways appropriate for the next steps in visual analysis. Our chief aim in this study was to examine and compare the synaptic arrangements and neurochemistry of elements involving direct lateral geniculate nucleus (LGN) input from the K pathway with those involving indirect LGN input from the M and P pathways arriving from cortical layer IV.

[1]  J. Kaas,et al.  The relay of ipsilateral and contralateral retinal input from the lateral geniculate nucleus to striate cortex in the owl monkey: a transneuronal transport study , 1976, Brain Research.

[2]  E. Marg A VISION OF THE BRAIN , 1994 .

[3]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  P. Rakić,et al.  Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  T. Powell,et al.  An experimental study of the termination of the lateral geniculo–cortical pathway in the cat and monkey , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus) , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  V. Casagrande,et al.  Laminar organization of receptive-field properties in lateral geniculate nucleus of bush baby (Galago crassicaudatus). , 1982, Journal of neurophysiology.

[9]  J. Malpeli,et al.  Cat area 17. I. Pattern of thalamic control of cortical layers. , 1986, Journal of neurophysiology.

[10]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[11]  David C. Van Essen,et al.  Multiple processing streams in occipitotemporal visual cortex , 1994, Nature.

[12]  G. H. Jacobs,et al.  Photopigments and color vision in the nocturnal monkey,Aotus , 1993, Vision Research.

[13]  Gregg E. Irvin,et al.  Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus , 1993, Visual Neuroscience.

[14]  K. Tanaka Cross-correlation analysis of geniculostriate neuronal relationships in cats. , 1983, Journal of neurophysiology.

[15]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[16]  A. Peters,et al.  Organization of pyramidal neurons in area 17 of monkey visual cortex , 1991, The Journal of comparative neurology.

[17]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[18]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[19]  M. Wong-Riley,et al.  Effect of impulse blockage on cytochrome oxidase activity in monkey visual system , 1984, Nature.

[20]  K. Purpura,et al.  Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs , 1995, Vision Research.

[21]  R. Weinberg,et al.  Glutamate in thalamic fibers terminating in layer IV of primary sensory cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[23]  M. Wong-Riley,et al.  Differential glutamatergic innervation in cytochrome oxidase‐rich and ‐poor regions of the macaque striate cortex: Quantitative EM analysis of neurons and neuropil , 1996, The Journal of comparative neurology.

[24]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation , 1985, The Journal of comparative neurology.

[26]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[27]  T. Powell,et al.  The termination of thalamo-cortical fibres in the visual cortex of the cat , 1976, Journal of neurocytology.

[28]  J. Malpeli Activity of cells in area 17 of the cat in absence of input from layer a of lateral geniculate nucleus. , 1983, Journal of neurophysiology.

[29]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[30]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[31]  R. Hassler Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .

[32]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements , 1985, The Journal of comparative neurology.

[33]  A. B. Bonds,et al.  Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns. , 1993, Journal of neurophysiology.

[34]  J. Kaas,et al.  The projections of the lateral geniculate nucleus of the squirrel monkey: Studies of the interlaminar zones and the S layers , 1983, The Journal of comparative neurology.

[35]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[37]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  S. Zeki,et al.  Segregation and convergence of specialised pathways in macaque monkey visual cortex. , 1995, Journal of anatomy.

[39]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  G. H. Jacobs,et al.  Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatus) , 1996, American journal of primatology.

[41]  V. Casagrande,et al.  Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: Correlations with patterns of cytochrome oxidase , 1993, The Journal of comparative neurology.

[42]  T. Powell,et al.  The termination of geniculocortical fibres in area 17 of the visual cortex in the macaque monkey , 1982, Brain Research.

[43]  R. Porter,et al.  Anatomy and physiology of glutamate in the CNS , 1994, Neurology.

[44]  J. Kaas,et al.  The postnatal development of geniculocortical axon arbors in owl monkeys , 1994, Visual Neuroscience.

[45]  V. Montero,et al.  Quantitative immunogold evidence for enrichment of glutamate but not aspartate in synaptic terminals of retino-geniculate, geniculo-cortical, and cortico-geniculate axons in the cat , 1994, Visual Neuroscience.

[46]  V. Casagrande,et al.  Direct W‐like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: Axon morphology , 1992, The Journal of comparative neurology.

[47]  V. Casagrande,et al.  The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1 , 1997, Visual Neuroscience.

[48]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  K. Hoffmann,et al.  Combined GABA-immunocytochemistry and TMB-HRP histochemistry of pretectal nuclei projecting to the inferior olive in rats, cats and monkeys , 1987, Brain Research.

[50]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[51]  Peter Sterling,et al.  Ultrastructure of synapses from the A‐laminae of the lateral geniculate nucleus in layer IV of the cat striate cortex , 1987, The Journal of comparative neurology.

[52]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[53]  M. Mesulam,et al.  Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. , 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[54]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[56]  V. M. Montero,et al.  Quantitative immunogold analysis reveals high glutamate levels in synaptic terminals of retino-geniculate, cortico-geniculate, and geniculo-cortical axons in the cat , 1990, Visual Neuroscience.

[57]  D. Hubel,et al.  Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey , 1981, Nature.

[58]  R. Weinberg,et al.  Techniques to optimize post-embedding single and double staining for amino acid neurotransmitters. , 1992, Journal of Histochemistry and Cytochemistry.

[59]  Vivien A. Casagrande,et al.  W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus) , 1986, Brain Research.

[60]  A. Hendrickson,et al.  Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex , 1981, Nature.

[61]  T. P. S. Powell,et al.  Laminar cell counts and geniculo-cortical boutons in area 17 of cat and monkey , 1983, Brain Research.

[62]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[63]  J. B. Levitt,et al.  Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections , 1994, Visual Neuroscience.

[64]  C. Cotman,et al.  Perforated postsynaptic densities: probable intermediates in synapse turnover. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex, IV terminations upon spiny dendrites , 1977, Journal of neurocytology.

[66]  C. M. Kemp,et al.  The distribution and kinetics of visual pigments in the owl monkey retina. , 1991, Experimental eye research.

[67]  S. Sutherland Eye, brain and vision , 1993, Nature.

[68]  D. Fitzpatrick,et al.  Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus , 1985, The Journal of comparative neurology.

[69]  A. Leventhal The neural basis of visual function , 1991 .