Controlling the motion of robot manipulators on constrained surfaces

We present a methodology to steer the end effector of a robotic manipulator, which is constrained in terms of joint rates, on the surface within the workspace, to perform surface tasks. We develop smooth controllers for stabilizing the end effector to a point, and for tracking a trajectory on this surface, while respecting the input constraints, and the same time applying a specific force on it. We show that the resulting closed loop system is uniformly asymptotically stable and we verify our analytical development with computer simulations.

[1]  Kostas J. Kyriakopoulos,et al.  Motion Planning and Trajectory Tracking on 2-D Manifolds embedded in 3-D Workspaces , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[2]  Kostas J. Kyriakopoulos,et al.  Motion Tasks and Force Control for Robot Manipulators on Embedded 2-D Manifolds , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[3]  K.J. Kyriakopoulos,et al.  Modeling, full identification and control of the mitsubishi PA-10 robot arm , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[4]  Lorenzo Sciavicco,et al.  The parallel approach to force/position control of robotic manipulators , 1993, IEEE Trans. Robotics Autom..

[5]  Rajnikant V. Patel,et al.  A collision-avoidance scheme for redundant manipulators: Theory and experiments , 2005, J. Field Robotics.

[6]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[7]  K.J. Kyriakopoulos,et al.  Motion Planning of Piezoelectrically Driven Micro-Robots Via Navigation Functions , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[8]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[9]  X. Papageorgiou,et al.  Motion tasks for robot manipulators on embedded 2-D manifolds , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[10]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[11]  Kostas J. Kyriakopoulos,et al.  Motion tasks for robot manipulators on embedded 2-D manifolds under input constraints , 2007, 2007 European Control Conference (ECC).

[12]  J.P. Desai,et al.  Modeling and control of the Mitsubishi PA-10 robot arm harmonic drive system , 2005, IEEE/ASME Transactions on Mechatronics.

[13]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[14]  Rajni V. Patel,et al.  A collision-avoidance scheme for redundant manipulators: Theory and experiments: Research Articles , 2005 .

[15]  Howie Choset,et al.  Uniform Coverage of Automotive Surface Patches , 2005, Int. J. Robotics Res..

[16]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[17]  Bruno Siciliano,et al.  Robot Force Control , 2000 .

[18]  Howie Choset,et al.  Uniform Coverage of Simple Surfaces Embedded in for Auto-Body Painting , 2004, WAFR.

[19]  Jun Wang,et al.  Obstacle avoidance for kinematically redundant manipulators using a dual neural network , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[20]  Kostas J. Kyriakopoulos,et al.  Compliant motion tasks for robot manipulators subject to joint velocity constraints , 2008, 2008 47th IEEE Conference on Decision and Control.

[21]  Howie Choset,et al.  Towards optimal coverage of 2-dimensional surfaces embedded in IR/sup 3/: choice of start curve , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[22]  Homayoun Seraji,et al.  Real-time collision avoidance for position-controlled manipulators , 1999, IEEE Trans. Robotics Autom..

[23]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .