Recursive parameter and state estimation for a mining industry process

In this paper we consider the problem of recursive state and parameter estimation of a nonlinear system. We propose an approach where we combine Particle Filter (for state estimation) and Recursive Least Squares (for parameter estimation) The class of nonlinear systems is motivated by a real process of the copper mining industry. The proposed approach is tested with real data.

[1]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[2]  Fredrik Gustafsson,et al.  Some Relations Between Extended and Unscented Kalman Filters , 2012, IEEE Transactions on Signal Processing.

[3]  Christophe Andrieu,et al.  Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.

[4]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[5]  Thomas Bo Schön,et al.  Particle Filters for System Identification of State-Space Models Linear in Either Parameters or States , 2003 .

[6]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[7]  Maurice G. Kendall,et al.  Classical inference and relationship , 1999 .

[8]  G. Goodwin,et al.  Modified least squares algorithm incorporating exponential resetting and forgetting , 1988 .

[9]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[10]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[11]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[12]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[13]  F. Gustafsson,et al.  Complexity analysis of the marginalized particle filter , 2005, IEEE Transactions on Signal Processing.

[14]  Graham C. Goodwin,et al.  A scenario-based approach to parameter estimation in state-space models having quantized output data , 2010, 49th IEEE Conference on Decision and Control (CDC).

[15]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .