Recursive parameter and state estimation for a mining industry process
暂无分享,去创建一个
R. A. Lopez | J. I. Yuz | W. U. Creixell | J. A. Ramirez | J. Yuz | J. Ramirez | R. López | W. Creixell
[1] Biao Huang,et al. System Identification , 2000, Control Theory for Physicists.
[2] Fredrik Gustafsson,et al. Some Relations Between Extended and Unscented Kalman Filters , 2012, IEEE Transactions on Signal Processing.
[3] Christophe Andrieu,et al. Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.
[4] Thomas B. Schön,et al. Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.
[5] Thomas Bo Schön,et al. Particle Filters for System Identification of State-Space Models Linear in Either Parameters or States , 2003 .
[6] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[7] Maurice G. Kendall,et al. Classical inference and relationship , 1999 .
[8] G. Goodwin,et al. Modified least squares algorithm incorporating exponential resetting and forgetting , 1988 .
[9] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[10] D.G. Dudley,et al. Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.
[11] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[12] Dan Simon,et al. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .
[13] F. Gustafsson,et al. Complexity analysis of the marginalized particle filter , 2005, IEEE Transactions on Signal Processing.
[14] Graham C. Goodwin,et al. A scenario-based approach to parameter estimation in state-space models having quantized output data , 2010, 49th IEEE Conference on Decision and Control (CDC).
[15] Lennart Ljung,et al. Theory and Practice of Recursive Identification , 1983 .