Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials

[1]  Haiyan Li,et al.  Impact of Surface Area in Evaluation of Catalyst Activity , 2018, Joule.

[2]  Oleksandr Voznyy,et al.  Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. , 2018, Nature chemistry.

[3]  Michael B. Ross,et al.  Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate , 2017 .

[4]  T. Jaramillo,et al.  Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. , 2017, Journal of the American Chemical Society.

[5]  Yongfeng Hu,et al.  Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-Iron Core-Shell Nanoparticles. , 2017, Journal of the American Chemical Society.

[6]  Wei Chen,et al.  Exclusive Formation of Formic Acid from CO2 Electroreduction by a Tunable Pd-Sn Alloy. , 2017, Angewandte Chemie.

[7]  Philip Earis The Energy to Power the Future , 2017 .

[8]  Jeremy T. Feaster,et al.  Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes , 2017 .

[9]  Jens K Nørskov,et al.  Understanding trends in electrochemical carbon dioxide reduction rates , 2017, Nature Communications.

[10]  Dongwei Du,et al.  Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid , 2017, Journal of Applied Electrochemistry.

[11]  D. Macfarlane,et al.  Hierarchical Mesoporous SnO2 Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO2 Reduction with High Efficiency and Selectivity. , 2017, Angewandte Chemie.

[12]  Oleksandr Voznyy,et al.  Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration , 2016, Nature.

[13]  B. Pan,et al.  Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction , 2016, Nature Communications.

[14]  Zhimin Liu,et al.  Efficient Reduction of CO2 into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. , 2016, Angewandte Chemie.

[15]  Tejs Vegge,et al.  Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid. , 2016, ChemSusChem.

[16]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[17]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[18]  M. Koper,et al.  Electrochemical CO2 Reduction to Formic Acid at Low Overpotential and with High Faradaic Efficiency on Carbon-Supported Bimetallic Pd–Pt Nanoparticles , 2015 .

[19]  M. Kanan,et al.  Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. , 2015, Journal of the American Chemical Society.

[20]  Matthew W. Kanan,et al.  Controlling H+ vs CO2 Reduction Selectivity on Pb Electrodes , 2015 .

[21]  Thomas Bligaard,et al.  Assessing the reliability of calculated catalytic ammonia synthesis rates , 2014, Science.

[22]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[23]  T. Meyer,et al.  Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. , 2014, Journal of the American Chemical Society.

[24]  R. Li,et al.  Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles , 2014 .

[25]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[26]  T. Jaramillo,et al.  In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. , 2013, Journal of the American Chemical Society.

[27]  Paul J. A. Kenis,et al.  Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[28]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[29]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[30]  Matthew W. Kanan,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[31]  Andrew A. Peterson,et al.  Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts , 2012 .

[32]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[33]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  T. Reda,et al.  Reversible interconversion of carbon dioxide and formate by an electroactive enzyme , 2008, Proceedings of the National Academy of Sciences.

[36]  C. Mele,et al.  A Review of Nanostructural Aspects of Metal Electrodeposition , 2008, International Journal of Electrochemical Science.

[37]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[38]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. , 2004, The journal of physical chemistry. B.

[39]  J. Kawai,et al.  Comparison of the Sn L edge X-ray absorption spectra and the corresponding electronic structure in Sn, SnO, and SnO2 , 2004 .

[40]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[41]  D. Scherer,et al.  VPython: 3D interactive scientific graphics for students , 2000, Comput. Sci. Eng..

[42]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[45]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[46]  Pierre Villars,et al.  Pearson's handbook of crystallographic data for intermetallic phases , 1985 .

[47]  John A. Horsley Relationship between the area of L2,3 x‐ray absorption edge resonances and the d orbital occupancy in compounds of platinum and iridium , 1982 .

[48]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[49]  K. Hodgson,et al.  Letter: Molybdenum X-ray absorption edge spectra. The chemical state of molybdenum in nitrogenase. , 1976, Journal of the American Chemical Society.