A Cultural Algorithm for the Urban Public Transportation

In the last years the population of Leon City, located in the state of Guanajuato in Mexico, has been considerably increasing, causing the inhabitants to waste most of their time with public transportation As a consequence of the demographic growth and traffic bottleneck, users deal with the daily problem of optimizing their travel so that to get to their destination on time To give a solution to this problem of obtaining an optimized route between two points in a public transportation, a method based on the cultural algorithms technique is proposed Cultural algorithms are used in the generated knowledge in a set of time periods for a same population, using a belief space These types of algorithms are a recent creation The proposed method seeks a path that minimizes the time of traveling and the number of transfers The results of the experiment show that the technique of the cultural algorithms is applicable to these kinds of multi-objective problems.

[1]  W. Ali,et al.  Extraction of topological features from communication network topological patterns using self-organizing feature maps , 2004, ArXiv.

[2]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[3]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[4]  V. GracielaMoraGuadalupeCastilla,et al.  A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks , 2010, Computación y Sistemas.

[5]  Graham Kendall,et al.  An investigation of a tabu assisted hyper-heuristic genetic algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[6]  Mauro Birattari,et al.  Tuning Metaheuristics - A Machine Learning Perspective , 2009, Studies in Computational Intelligence.

[7]  Hein Meling,et al.  Towards Adaptive, Resilient and Self-organizing Peer-to-Peer Systems , 2002, NETWORKING Workshops.

[8]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[9]  Andrew W. Moore,et al.  The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.

[10]  Chris Wiggins,et al.  Discriminative topological features reveal biological network mechanisms , 2004, BMC Bioinformatics.

[11]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[12]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[14]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[15]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization , 2011, WIREs Data Mining Knowl. Discov..

[16]  Carlos A. Coello Coello,et al.  Use of domain information to improve the performance of an evolutionary algorithm , 2005, GECCO '05.

[17]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[18]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[19]  Andrew W. Moore,et al.  Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation , 1993, NIPS.

[20]  Edoardo M. Airoldi,et al.  Sampling algorithms for pure network topologies: a study on the stability and the separability of metric embeddings , 2005, SKDD.

[21]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..

[22]  Peter Manfred Siegfried Reiter Matheuristic algorithms for solving multi-objective/stochastic scheduling and routing problems , 2010 .

[23]  B. Roy THE OUTRANKING APPROACH AND THE FOUNDATIONS OF ELECTRE METHODS , 1991 .

[24]  Gerti Kappel,et al.  Ant Algorithms for Self-Organization in Social Networks Conducted for the purpose of receiving the academic title 'Doktorin der technischen Wissenschaften' Advisors , 2007 .

[25]  Hein Meling,et al.  Anthill: a framework for the development of agent-based peer-to-peer systems , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[26]  Gerti Kappel,et al.  Using taxonomies for content-based routing with ants , 2007, Comput. Networks.

[27]  Claudia Gómez Santillán,et al.  Impact of Dynamic Growing on the Internet Degree Distribution , 2007, ISPA Workshops.

[28]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[29]  Carlos Castro,et al.  Stable solving of CVRPs using hyperheuristics , 2009, GECCO '09.

[30]  Fereidoun Ghasemzadeh,et al.  A zero-one model for project portfolio selection and scheduling , 1999, J. Oper. Res. Soc..

[31]  Gomez Santillan,et al.  AFINACION ESTATICA GLOBAL DE REDES COMPLEJAS Y CONTROL DINAMICO LOCAL DE LA FUNCION TIEMPO DE VIDA EN EL PROBLEMA DE DIRECCIONAMIENTO DE CONSULTAS SEMANTICAS , 2010 .

[32]  Andrzej Osyczka,et al.  7 – Multicriteria optimization for engineering design , 1985 .

[33]  Peter J. Angeline,et al.  Adaptive and Self-adaptive Evolutionary Computations , 1995 .

[34]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[35]  Claudia Gómez Santillán,et al.  Solution to the Social Portfolio Problem by Evolutionary Algorithms , 2012, Int. J. Comb. Optim. Probl. Informatics.

[36]  Carlos A. Coello Coello,et al.  A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems , 2010, IEEE Transactions on Evolutionary Computation.

[37]  Mauricio Granada Echeverri,et al.  Optimización multiobjetivo usando un algoritmo genético y un operador elitista basado en un ordenamiento no-dominado (NSGA-II) , 2007 .

[38]  Paul W. Goldberg,et al.  Reducibility among equilibrium problems , 2006, STOC '06.

[39]  Claudia Gómez Santillán,et al.  Local Survival Rule for Steer an Adaptive Ant-Colony Algorithm in Complex Systems , 2010, Soft Computing for Recognition Based on Biometrics.

[40]  Julio M. Ottino,et al.  Complex systems and networks: Challenges and opportunities for chemical and biological engineers , 2004 .

[41]  H. HéctorJ.Fraire,et al.  NAS Algorithm for Semantic Query Routing Systems in Complex Networks , 2008, DCAI.

[42]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[43]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[44]  Rafael Caballero,et al.  Solving a comprehensive model for multiobjective project portfolio selection , 2010, Comput. Oper. Res..

[45]  Ender Özcan,et al.  A comprehensive analysis of hyper-heuristics , 2008, Intell. Data Anal..

[46]  Eric Soubeiga,et al.  Development and application of hyperheuristics to personnel scheduling , 2003 .

[47]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[48]  Marvin V. Zelkowitz,et al.  Empirical studies to build a science of computer science , 2007, CACM.

[49]  Paul Erdös,et al.  On random graphs, I , 1959 .

[50]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[51]  Carlos Alberto Ochoa Ortíz Zezzatti,et al.  Evolving Optimization to Improve Diorama's Representation using a Mosaic Image , 2009, J. Comput..

[52]  Eduardo Fernández,et al.  A Genetic Search for Exploiting a Fuzzy Preference Model of Portfolio Problems with Public Projects , 2002, Ann. Oper. Res..

[53]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[54]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[55]  Graham Kendall,et al.  Exploring Hyper-heuristic Methodologies with Genetic Programming , 2009 .

[56]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[57]  John N. Hooker,et al.  Needed: An Empirical Science of Algorithms , 1994, Oper. Res..

[58]  Bernard Roy,et al.  Handling effects of reinforced preference and counter-veto in credibility of outranking , 2008, Eur. J. Oper. Res..

[59]  María Cristina Riff,et al.  Collaboration Between Hyperheuristics to Solve Strip-Packing Problems , 2007, IFSA.

[60]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[61]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[62]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[63]  Diomidis Spinellis,et al.  A survey of peer-to-peer content distribution technologies , 2004, CSUR.

[64]  Eduardo Fernández,et al.  Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method , 2011, Inf. Sci..

[65]  German Sakaryan A content-oriented approach to topology evolution and search in peer-to-peer systems , 2004 .

[66]  Jan-Ming Ho,et al.  AntSearch: An Ant Search Algorithm in Unstructured Peer-to-Peer Networks , 2006, ISCC.

[67]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[68]  Robert G. Reynolds,et al.  Cultural Algorithms: Knowledge-driven engineering optimization via weaving a social fabric as an enhanced influence function , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[69]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[70]  Juan Pablo Escorcia Caballero,et al.  Características de GRIDs vs. sistemas peer-to-peer y su posible conjunción , 2007 .