RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone

Although accurate details in RNA structure are of great importance for understanding RNA function, the backbone conformation is difficult to determine, and most existing RNA structures show serious steric clashes (≥ 0.4 Å overlap) when hydrogen atoms are taken into account. We have developed a program called RNABC (RNA Backbone Correction) that performs local perturbations to search for alternative conformations that avoid those steric clashes or other local geometry problems. Its input is an all-atom coordinate file for an RNA crystal structure (usually from the MolProbity web service), with problem areas specified. RNABC rebuilds a suite (the unit from sugar to sugar) by anchoring the phosphorus and base positions, which are clearest in crystallographic electron density, and reconstructing the other atoms using forward kinematics. Geometric parameters are constrained within user-specified tolerance of canonical or original values, and torsion angles are constrained to ranges defined through empirical database analyses. Several optimizations reduce the time required to search the many possible conformations. The output results are clustered and presented to the user, who can choose whether to accept one of the alternative conformations.Two test evaluations show the effectiveness of RNABC, first on the S-motifs from 42 RNA structures, and second on the worst problem suites (clusters of bad clashes, or serious sugar pucker outliers) in 25 unrelated RNA structures. Among the 101 S-motifs, 88 had diagnosed problems, and RNABC produced clash-free conformations with acceptable geometry for 71 of those (about 80%). For the 154 worst problem suites, RNABC proposed alternative conformations for 72. All but 8 of those were judged acceptable after examining electron density (where available) and local conformation. Thus, even for these worst cases, nearly half the time RNABC suggested corrections suitable to initiate further crystallographic refinement. The program is available from http://kinemage.biochem.duke.edu.

[1]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[2]  Shuren Wang,et al.  A test of enhancing model accuracy in high-throughput crystallography , 2005, Journal of Structural and Functional Genomics.

[3]  T. Steitz,et al.  The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. , 2004, Journal of molecular biology.

[4]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[5]  C. W. Hilbers,et al.  NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. , 1998, Science.

[6]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[7]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[8]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[9]  A. Lakshminarayanan,et al.  Stereochemistry of nucleic acids and polynucleotides. VI. Minimum energy conformations of dimethyl phosphate , 1969 .

[10]  Anna Marie Pyle,et al.  RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. , 2003, Nucleic acids research.

[11]  Adrian A Canutescu,et al.  Cyclic coordinate descent: A robotics algorithm for protein loop closure , 2003, Protein science : a publication of the Protein Society.

[12]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[13]  L. Cassiday,et al.  Crystal structure of NF-kappaB (p50)2 complexed to a high-affinity RNA aptamer. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Strobel,et al.  Crystal structure of an intact group I self-splicing intron in complex with both introns , 2004 .

[15]  J. Thornton,et al.  Stereochemical quality of protein structure coordinates , 1992, Proteins.

[16]  J L Sussman,et al.  Three-dimensional structure of a transfer rna in two crystal forms. , 1976, Science.

[17]  Thomas A Steitz,et al.  Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. , 2003, Journal of molecular biology.

[18]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[19]  Florian C. Oberstrass,et al.  Shape-specific recognition in the structure of the Vts1p SAM domain with RNA , 2006, Nature Structural &Molecular Biology.

[20]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[21]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[22]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[23]  Andrej Lupták,et al.  A Genomewide Search for Ribozymes Reveals an HDV-Like Sequence in the Human CPEB3 Gene , 2006, Science.

[24]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[25]  T. Hahn International tables for crystallography , 2002 .

[26]  A. S. Krasilnikov,et al.  Crystal structure of the RNA component of bacterial ribonuclease P , 2005, Nature.

[27]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[28]  A. Ferré-D’Amaré,et al.  Structural Basis of glmS Ribozyme Activation by Glucosamine-6-Phosphate , 2006, Science.

[29]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[30]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[31]  T. Nilsen,et al.  RNA-RNA interactions in the spliceosome: Unraveling the ties that bind , 1994, Cell.

[32]  J. Langdale,et al.  Faculty Opinions recommendation of Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. , 2005 .

[33]  J. Mattick Non‐coding RNAs: the architects of eukaryotic complexity , 2001, EMBO reports.

[34]  J. Claverie Fewer Genes, More Noncoding RNA , 2005, Science.

[35]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[36]  Phillip D Zamore,et al.  Perspective: machines for RNAi. , 2005, Genes & development.

[37]  D. Lilley,et al.  Structure, folding and mechanisms of ribozymes. , 2005, Current opinion in structural biology.

[38]  Jeff Zimmerman,et al.  Crystal structure of NF-κB (p50)2 complexed to a high-affinity RNA aptamer , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Eric Westhof,et al.  An mRNA Is Capped by a 2', 5' Lariat Catalyzed by a Group I-Like Ribozyme , 2005, Science.

[40]  A. R. Srinivasan,et al.  The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. , 1992, Biophysical journal.

[41]  G. Soukup,et al.  Riboswitches exert genetic control through metabolite-induced conformational change. , 2004, Current opinion in structural biology.

[42]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[43]  Joachim Frank,et al.  Electron microscopy of functional ribosome complexes. , 2003, Biopolymers.

[44]  Steven E. Brenner,et al.  SCOR: a Structural Classification of RNA database , 2002, Nucleic Acids Res..

[45]  D. Rhodes,et al.  The crystal structure of yeast phenylalanine tRNA at 2.0 A resolution: cleavage by Mg(2+) in 15-year old crystals. , 2000, Journal of molecular biology.

[46]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[47]  Thomas C Terwilliger,et al.  Automated structure solution, density modification and model building. , 2002, Acta crystallographica. Section D, Biological crystallography.

[48]  H. Berman,et al.  New parameters for the refinement of nucleic acid-containing structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[49]  Helen M Berman,et al.  RNA conformational classes. , 2004, Nucleic acids research.

[50]  James W. Brown,et al.  The RNA Ontology Consortium: an open invitation to the RNA community. , 2006, RNA.

[51]  B. Golden,et al.  Crystal structure of a phage Twort group I ribozyme–product complex , 2005, Nature Structural &Molecular Biology.

[52]  Y. Chan,et al.  The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. , 2003, Nucleic acids research.

[53]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[54]  Zukang Feng,et al.  The Nucleic Acid Database. , 2002, Acta crystallographica. Section D, Biological crystallography.

[55]  Jennifer A. Doudna,et al.  The chemical repertoire of natural ribozymes , 2002, Nature.

[56]  David C. Richardson,et al.  MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes , 2004, Nucleic Acids Res..

[57]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[58]  Joseph D Puglisi,et al.  Structure of HCV IRES domain II determined by NMR , 2003, Nature Structural Biology.

[59]  S. Strobel,et al.  Structural Evidence for a Two-Metal-Ion Mechanism of Group I Intron Splicing , 2005, Science.

[60]  A. Ferré-D’Amaré,et al.  Crystal structure of a hepatitis delta virus ribozyme , 1998, Nature.

[61]  Kevin A. Jarrell,et al.  Flipping the Switch to an Active Spliceosome , 1999, Cell.

[62]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[63]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit , 2000 .

[64]  A. V. Lakshminarayanan,et al.  Stereochemistry of nucleic acids and polynucleotides. IV. Conformational energy of base‐sugar units , 1969 .

[65]  G. Rose,et al.  A complete conformational map for RNA. , 1999, Journal of molecular biology.

[66]  W. Scott,et al.  Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis , 2006, Cell.

[67]  Jiunn-Liang Chen,et al.  Telomerase RNA structure and function: implications for dyskeratosis congenita. , 2004, Trends in biochemical sciences.

[68]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[69]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[70]  T. A. Jones,et al.  The Uppsala Electron-Density Server. , 2004, Acta crystallographica. Section D, Biological crystallography.

[71]  W. B. Arendall,et al.  RNA backbone is rotameric , 2003, Proceedings of the National Academy of Sciences of the United States of America.