Statistical group comparison of diffusion tensors via multivariate hypothesis testing

Diffusion tensor imaging (DTI) provides a powerful tool for identifying white matter (WM) alterations in clinical populations. The prevalent method for group‐level analysis of DTI is statistical comparison of the diffusion tensor fractional anisotropy (FA) metric. The FA metric, however, does not capture the full orientational information contained in the diffusion tensor. For example, the FA test is incapable of detecting group‐level differences in diffusion orientation when the level of anisotropy is unaffected. Here, we apply multivariate hypothesis testing procedures to the elements of the diffusion tensor as an alternative to univariate testing using FA. Both parametric and nonparametric tests are proposed with each choice carrying specific assumptions about the diffusion tensor model. Of particular interest is the Cramér test, which works on Euclidean interpoint distances and can be readily adapted to a specific non‐Euclidean framework by applying matrix logarithms to the diffusion tensors. Using Monte Carlo simulations, we show that multivariate tests can detect diffusion tensor principal eigenvector differences of 15 degrees with up to 80–90% power under typical design conditions. We also show that some multivariate tests are more sensitive to FA differences, when compared to a univariate test on FA, even if there is no principal eigenvector difference. The Cramér test, using the Euclidean interpoint distances, performed best under both simulation scenarios. When applying the Cramér test of the diffusion tensor in a clinical population with a history of migraine, a 169% increase was observed in the volume of a significant cluster compared to the univariate FA test. Magn Reson Med 57:1065–1074, 2007. © 2007 Wiley‐Liss, Inc.

[1]  P. Basser,et al.  Parametric and non-parametric statistical analysis of DT-MRI data. , 2003, Journal of magnetic resonance.

[2]  Peter J. Basser,et al.  A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI , 2003, IEEE Transactions on Medical Imaging.

[3]  F. Pesarin Multivariate Permutation Tests : With Applications in Biostatistics , 2001 .

[4]  Mary E. Meyerand,et al.  The Asymptotic Distribution of Diffusion Tensor and Fractional Anisotropy Estimates , 2006 .

[5]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[6]  J. Kaas The functional organization of somatosensory cortex in primates. , 1993, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[7]  J. Olesen,et al.  The International Classification of Headache Disorders, 2nd Edition (ICHD-II)—-Revision of Criteria for 8.2 Medication-Overuse Headache , 2005, Cephalalgia : an international journal of headache.

[8]  R. Dougherty,et al.  Cross‐subject comparison of principal diffusion direction maps , 2005, Magnetic resonance in medicine.

[9]  Gareth J. Barker,et al.  D: The Diffusion of Water , 2004 .

[10]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[11]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[12]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[13]  The Organization of the cerebral cortex : proceedings of a Neurosciences Research Program colloquium , 1981 .

[14]  Stephen M. Smith,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[15]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[16]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[17]  Stefan Skare,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Extensive Blockinpiano Blockinpracticing Blockinhas Blockinregionally Specific Blockineffects Blockinon Blockinwhite Blockinmatter Blockindevelopment , 2022 .

[18]  F. O. Schmitt,et al.  The Organization of the Cerebral Cortex. , 1982 .

[19]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[20]  J. Imhof Computing the distribution of quadratic forms in normal variables , 1961 .

[21]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[22]  R. W. Farebrother,et al.  The Distribution of a Quadratic Form in Normal Variables , 1990 .

[23]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[24]  A L Alexander,et al.  Analytical computation of the eigenvalues and eigenvectors in DT-MRI. , 2001, Journal of magnetic resonance.

[25]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[26]  J. Kaas,et al.  Multiple representations of the body within the primary somatosensory cortex of primates. , 1979, Science.

[27]  H. Harter Encyclopedia of Statistical Sciences, Volume 1 , 1983 .

[28]  K. Krishnan,et al.  Diffusion tensor imaging: background, potential, and utility in psychiatric research , 2003, Biological Psychiatry.

[29]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[30]  P. Tofts Quantitative MRI of the Brain , 2003 .

[31]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[32]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[33]  G. Jogesh Babu,et al.  Multivariate Permutation Tests , 2002, Technometrics.

[34]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[35]  Massimo Filippi,et al.  Evidence for Cortical Functional Changes in Patients With Migraine and White Matter Abnormalities on Conventional and Diffusion Tensor Magnetic Resonance Imaging , 2003, Stroke.

[36]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[37]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[38]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[39]  L. Baringhaus,et al.  On a new multivariate two-sample test , 2004 .

[40]  J. Kaas How sensory cortex is subdivided in mammals: implications for studies of prefrontal cortex. , 1990, Progress in brain research.

[41]  M. Kaltenhäuser,et al.  Hyperexcitability of the primary somatosensory cortex in migraine--a magnetoencephalographic study. , 2004, Brain : a journal of neurology.

[42]  R. W. Farebrother Computing the Distribution of a Quadratic Form in Normal Variables , 2002 .

[43]  Jochen Winkelmann Diffusion of water , 2007 .

[44]  Nicholas Ayache,et al.  Fast and Simple Calculus on Tensors in the Log-Euclidean Framework , 2005, MICCAI.

[45]  Thomas L Chenevert,et al.  Clinical applications of diffusion tensor imaging , 2004, Journal of magnetic resonance imaging : JMRI.

[46]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.