Orthonormal Basis Functions for Continuous-Time Systems and Lp Convergence
暂无分享,去创建一个
[1] Graham C. Goodwin,et al. Iterative algorithm for robust performance optimization , 1993 .
[2] Jonathan R. Partington,et al. Interpolation in Normed Spaces from the Values of Linear Functionals , 1994 .
[3] P. Duren. Theory of H[p] spaces , 1970 .
[4] B. Ninness,et al. A unifying construction of orthonormal bases for system identification , 1997, IEEE Trans. Autom. Control..
[5] Jerry M. Mendel,et al. A Unified Approach to the Synthesis of Orthonormal Exponential Functions Useful in Systems Analysis , 1966, IEEE Trans. Syst. Sci. Cybern..
[6] O. Morg. A Unifying Construction of Orthonormal Bases for System Identification , 1997 .
[7] L. Wang,et al. Frequency smoothing using Laguerre model , 1992 .
[8] Brett Ninness,et al. Orthonormal basis functions for modelling continuous-time systems , 1999, Signal Process..
[9] Jozsef Bokor,et al. System identification with generalized orthonormal basis functions , 1995, Autom..
[10] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[11] D. C. Ross. Orthonormal exponentials , 1964, IEEE Transactions on Communication and Electronics.
[12] P. Duren. Theory of Hp Spaces , 2000 .
[13] Christopher J. BISHOPAbstra,et al. Orthogonal Functions , 2022 .
[14] Jonathan R. Partington,et al. Robust identification in the disc algebra using rational wavelets and orthonormal basis functions , 1996 .
[15] B. Epstein. Orthogonal families of analytic functions , 1965 .
[16] Bo Wahlberg,et al. On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..
[17] Jonathan R. Partington,et al. Approximation of delay systems by fourier-laguerre series , 1991, Autom..
[18] P. V. D. Hof,et al. A generalized orthonormal basis for linear dynamical systems , 1995, IEEE Trans. Autom. Control..
[19] B. Wahlberg. System identification using Laguerre models , 1991 .
[20] B. Wahlberg. System identification using Kautz models , 1994, IEEE Trans. Autom. Control..
[21] Tomás Oliveira e Silva,et al. Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..
[22] Pertti M. Mäkilä,et al. Laguerre series approximation of infinite dimensional systems , 1990, Autom..
[23] J. Schoukens,et al. Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..
[24] H. Hjalmarsson,et al. Generalized Fourier and Toeplitz Results for Rational Orthonormal Bases , 1999 .
[25] L. Ljung,et al. Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..
[26] Z. Nehari. Bounded analytic functions , 1950 .
[27] Paul W. Broome,et al. Discrete Orthonormal Sequences , 1965, JACM.
[28] P. R. Clement. Applications of generalized laguerre functions , 1985 .
[29] P. M. Mäkilät. Laguerre methods and H ∞ identification of continuous-time systems , 1991 .
[30] P. Khargonekar,et al. Approximation of infinite-dimensional systems , 1989 .
[31] Brett Ninness,et al. Rational Basis Functions for Robust Identification from Frequency and Time-Domain Measurements , 1998, Autom..
[32] T. E. O. Silva. Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles , 1995, IEEE Trans. Autom. Control..
[33] I. Horowitz. Synthesis of feedback systems , 1963 .
[34] Brett Ninness,et al. Orthonormal basis functions for continuous-time systems: Completeness and Lp-convergence , 1999, 1999 European Control Conference (ECC).
[35] Brett Ninness,et al. Identification of power transformer models from frequency response data: A case study , 1998, Signal Process..