Parsing Tweets into Universal Dependencies

We study the problem of analyzing tweets with Universal Dependencies. We extend the UD guidelines to cover special constructions in tweets that affect tokenization, part-of-speech tagging, and labeled dependencies. Using the extended guidelines, we create a new tweet treebank for English (Tweebank v2) that is four times larger than the (unlabeled) Tweebank v1 introduced by Kong et al. (2014). We characterize the disagreements between our annotators and show that it is challenging to deliver consistent annotation due to ambiguity in understanding and explaining tweets. Nonetheless, using the new treebank, we build a pipeline system to parse raw tweets into UD. To overcome annotation noise without sacrificing computational efficiency, we propose a new method to distill an ensemble of 20 transition-based parsers into a single one. Our parser achieves an improvement of 2.2 in LAS over the un-ensembled baseline and outperforms parsers that are state-of-the-art on other treebanks in both accuracy and speed.

[1]  Joakim Nivre,et al.  Universal Stanford dependencies: A cross-linguistic typology , 2014, LREC.

[2]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[3]  Brendan T. O'Connor,et al.  TweetMotif: Exploratory Search and Topic Summarization for Twitter , 2010, ICWSM.

[4]  Iryna Gurevych,et al.  Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging , 2017, EMNLP.

[5]  Yuji Matsumoto,et al.  Statistical Dependency Analysis with Support Vector Machines , 2003, IWPT.

[6]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[7]  Brendan T. O'Connor,et al.  Improved Part-of-Speech Tagging for Online Conversational Text with Word Clusters , 2013, NAACL.

[8]  Joakim Nivre,et al.  A Dynamic Oracle for Arc-Eager Dependency Parsing , 2012, COLING.

[9]  Milan Straka,et al.  Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe , 2017, CoNLL.

[10]  Xuanjing Huang,et al.  Part-of-Speech Tagging for Twitter with Adversarial Neural Networks , 2017, EMNLP.

[11]  Jacob Eisenstein,et al.  What to do about bad language on the internet , 2013, NAACL.

[12]  Kim Gerdes Collaborative Dependency Annotation , 2013, DepLing.

[13]  Wei Xu,et al.  Bidirectional LSTM-CRF Models for Sequence Tagging , 2015, ArXiv.

[14]  Yue Zhang,et al.  Universal Dependencies Parsing for Colloquial Singaporean English , 2017, ACL.

[15]  Eduard H. Hovy,et al.  End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF , 2016, ACL.

[16]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[17]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[18]  Noah A. Smith,et al.  A Dependency Parser for Tweets , 2014, EMNLP.

[19]  Noah A. Smith,et al.  Training with Exploration Improves a Greedy Stack LSTM Parser , 2016, EMNLP.

[20]  Noah A. Smith,et al.  Improved Transition-based Parsing by Modeling Characters instead of Words with LSTMs , 2015, EMNLP.

[21]  Cristina Bosco,et al.  Annotating Italian Social Media Texts in Universal Dependencies , 2017, DepLing.

[22]  Eliyahu Kiperwasser,et al.  Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations , 2016, TACL.

[23]  Timothy Dozat,et al.  Stanford’s Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task , 2017, CoNLL.

[24]  David Yarowsky,et al.  Cross-lingual Dependency Parsing Based on Distributed Representations , 2015, ACL.

[25]  Kalina Bontcheva,et al.  Twitter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data , 2013, RANLP.

[26]  Noah A. Smith,et al.  Many Languages, One Parser , 2016, TACL.

[27]  Slav Petrov,et al.  A Universal Part-of-Speech Tagset , 2011, LREC.

[28]  Oren Etzioni,et al.  Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.

[29]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[30]  Robert L. Mercer,et al.  Class-Based n-gram Models of Natural Language , 1992, CL.

[31]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[32]  Josef van Genabith,et al.  #hardtoparse: POS Tagging and Parsing the Twitterverse , 2011, Analyzing Microtext.

[33]  Brendan T. O'Connor,et al.  A Framework for (Under)specifying Dependency Syntax without Overloading Annotators , 2013, LAW@ACL.

[34]  Sampo Pyysalo,et al.  Universal Dependencies v1: A Multilingual Treebank Collection , 2016, LREC.

[35]  Noah A. Smith,et al.  Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser , 2016, EMNLP.

[36]  M. Verleysen,et al.  Classification in the Presence of Label Noise: A Survey , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[37]  Joakim Nivre,et al.  Training Deterministic Parsers with Non-Deterministic Oracles , 2013, TACL.