Computational analysis and learning for a biologically motivated model of boundary detection

[1]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Iasonas Kokkinos,et al.  Towards bridging the Gap between Biological and Computational Image Segmentation , 2007 .

[3]  Zhuowen Tu,et al.  Supervised Learning of Edges and Object Boundaries , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Xuelong Li,et al.  Supervised tensor learning , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[5]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[6]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  Nicolai Petkov,et al.  Contour and boundary detection improved by surround suppression of texture edges , 2004, Image Vis. Comput..

[8]  O. Faugeras,et al.  A Biologically Motivated and Computationally Tractable Model of Low and Mid-Level Vision Tasks , 2004, ECCV.

[9]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  A. Yuille,et al.  Energy functions for early vision and analog networks , 1989, Biological Cybernetics.

[11]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[12]  Steven W. Zucker,et al.  Sketches with Curvature: The Curve Indicator Random Field and Markov Processes , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  P. Lennie Receptive fields , 2003, Current Biology.

[14]  Tai Sing Lee,et al.  Computations in the early visual cortex , 2003, Journal of Physiology-Paris.

[15]  Nicolai Petkov,et al.  Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition , 2003, Biological cybernetics.

[16]  Bruno A. Olshausen,et al.  Book Review , 2003, Journal of Cognitive Neuroscience.

[17]  Alan L. Yuille,et al.  Statistical Edge Detection: Learning and Evaluating Edge Cues , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  D. V. van Essen,et al.  Scene segmentation and attention in primate cortical areas V1 and V2. , 2002, Journal of neurophysiology.

[19]  Geoffrey E. Hinton,et al.  A New Learning Algorithm for Mean Field Boltzmann Machines , 2002, ICANN.

[20]  Jitendra Malik,et al.  A Probabilistic Multi-scale Model for Contour Completion Based on Image Statistics , 2002, ECCV.

[21]  A. Sillito,et al.  Surround suppression in primate V1. , 2001, Journal of neurophysiology.

[22]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[23]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[24]  M. Opper,et al.  Advanced mean field methods: theory and practice , 2001 .

[25]  Refractor Vision , 2000, The Lancet.

[26]  D. Whitteridge Learning and Relearning , 1959, Science's STKE.

[27]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[28]  J. Bakin,et al.  Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations , 2000, The Journal of Neuroscience.

[29]  Stephen Grossberg,et al.  Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps , 2000, Neural Networks.

[30]  Tommi S. Jaakkola,et al.  Tutorial on variational approximation methods , 2000 .

[31]  W. Godwin Article in Press , 2000 .

[32]  Heiko Neumann,et al.  Recurrent V1–V2 interaction in early visual boundary processing , 1999, Biological Cybernetics.

[33]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[34]  Z Li,et al.  Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex. , 1999, Network.

[35]  D. V. van Essen,et al.  Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia , 1999, Visual Neuroscience.

[36]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[37]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[38]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[39]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[40]  Diane C. Rogers-Ramachandran,et al.  Psychophysical evidence for boundary and surface systems in human vision , 1998, Vision Research.

[41]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[42]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1995, Neural Computation.

[43]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Adam L. Berger,et al.  A Maximum Entropy Approach to Natural Language Processing , 1996, CL.

[45]  Stephen Grossberg,et al.  Synthetic aperture radar processing by a multiple scale neural system for boundary and surface representation , 1995, Neural Networks.

[46]  T. S. Lee,et al.  A Bayesian framework for understanding texture segmentation in the primary visual cortex , 1995, Vision Research.

[47]  Heiko Neumann,et al.  A Contrast- and Luminance-driven Multiscale Network Model of Brightness Perception , 1995, Vision Research.

[48]  Tai Sing Lee,et al.  Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[49]  Hilbert J. Kappen Deterministic learning rules for boltzmann machines , 1995, Neural Networks.

[50]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[51]  David Mumford,et al.  Neuronal Architectures for Pattern-theoretic Problems , 1995 .

[52]  S Grossberg,et al.  3-D vision and figure-ground separation by visual cortex , 2010, Perception & psychophysics.

[53]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[54]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[55]  C. Bajaj Algebraic Geometry and its Applications , 1994 .

[56]  D. Mumford Elastica and Computer Vision , 1994 .

[57]  Luc Van Gool,et al.  Coupled Geometry-Driven Diffusion Equations for Low-Level Vision , 1994, Geometry-Driven Diffusion in Computer Vision.

[58]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[59]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[60]  Gérard G. Medioni,et al.  Inferring global perceptual contours from local features , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[61]  Rüdiger von der Heydt,et al.  A computational model of neural contour processing: Figure-ground segregation and illusory contours , 1993, 1993 (4th) International Conference on Computer Vision.

[62]  Tai Sing Lee,et al.  Texture Segmentation by Minimizing Vector-Valued Energy Functionals: The Coupled-Membrane Model , 1992, ECCV.

[63]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[64]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[65]  Jitendra Malik,et al.  Detecting and localizing edges composed of steps, peaks and roofs , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[66]  P. Perona,et al.  Detecting and localizing edges composed of steps , 1990 .

[67]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  A. Yuille,et al.  A common framework for image segmentation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[69]  S. Grossberg,et al.  The Adaptive Brain , 1990 .

[70]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[72]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[73]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[74]  S. Grossberg,et al.  Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena , 1988, Perception & psychophysics.

[75]  S. Grossberg Neural Networks and Natural Intelligence , 1988 .

[76]  S. Grossberg Cortical dynamics of three-dimensional form, color, and brightness perception: I. Monocular theory , 1987, Perception & psychophysics.

[77]  Stephen Grossberg,et al.  Neural dynamics of surface perception: Boundary webs, illuminants, and shape-from-shading , 1987, Comput. Vis. Graph. Image Process..

[78]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  C Koch,et al.  Analog "neuronal" networks in early vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Geoffrey E. Hinton,et al.  Learning and relearning in Boltzmann machines , 1986 .

[81]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[82]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985, Psychological review.

[83]  S Grossberg,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985, Perception & psychophysics.

[84]  L. Andrews,et al.  I–K distribution as a universal propagation model of laser beams in atmospheric turbulence , 1985 .

[85]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[86]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[87]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[89]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Stephen Grossberg,et al.  Absolute stability of global pattern formation and parallel memory storage by competitive neural networks , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[91]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[92]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[93]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.