Likelihood-based texture discrimination with multiscale stochastic models

A class of multiscale models describing stochastic processes indexed by the nodes of a tree has recently been introduced by Chou et al. (1994). Experimental and theoretical results indicate that this class of models is quite rich, and moreover these models lead to extremely efficient algorithms for optimal estimation based on noisy observations. This motivates further algorithmic development, and in particular, in this paper we present a likelihood calculation algorithm for this class of multiscale models. That is, we consider the problem of computing the log of the conditional probability of a set of data assuming that they correspond to a particular multiscale model. We exploit the structure of the multiscale models to develop an efficient, scale recursive algorithm that allows for multiresolution data and parameters which vary in both space and scale. We illustrate one possible application of the algorithm to a texture classification problem in which one must choose from a given set of models that model which best represents or most likely corresponds to a given set of random field measurements. Texture modeling with Gaussian Markov random field (GMRF) models is well documented. One difficulty in using GMRF models, however, is that the calculation of likelihoods may be prohibitively complex computationally if there is an irregular sampling pattern. It is shown here that GMRF models can be represented within our multiscale model class which allows us to approximately compute likelihoods for GMRF models based on measurements over arbitrarily sampled regions. As we demonstrate in the context of texture discrimination problems, the multiscale approach not only leads to computationally efficient implementations, but also to virtually the same performance as the optimal GMRF-based likelihood ratio test. We discuss further applications in the area of synthetic aperture radar imagery processing.<<ETX>>

[1]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[2]  M. Partridge Editor , 1960 .

[3]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[4]  James L. Crowley,et al.  A Representation for Shape Based on Peaks and Ridges in the Difference of Low-Pass Transform , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  R. D. Chaney,et al.  Optimal Processing of Polarimetric Synthetic-Aperture Radar Imagery , 1990 .

[6]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[7]  A. Krener,et al.  Modeling and estimation of discrete-time Gaussian reciprocal processes , 1990 .

[8]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[9]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.

[10]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[11]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Wilfried Enkelmann,et al.  Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..

[13]  Mladen Victor Wickerhauser,et al.  Lectures On Wavelet Packet Algorithms , 1991 .

[14]  H. Derin,et al.  Modeling and segmentation of speckled images using complex data , 1990 .

[15]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[16]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[17]  Thrasyvoulos N. Pappas,et al.  An Adaptive Clustering Algorithm For Image Segmentation , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[18]  P. Pérez,et al.  Parallel visual motion analysis using multiscale Markov random fields , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[19]  M. Morf,et al.  Fast time-invariant implementations of Gaussian signal detectors , 1978, IEEE Trans. Inf. Theory.

[20]  M. Vetterli Filter banks allowing perfect reconstruction , 1986 .

[21]  Laveen N. Kanal,et al.  Classification of binary random patterns , 1965, IEEE Trans. Inf. Theory.

[22]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[23]  Fernand S. Cohen Modeling of ultrasound speckle with application in flaw detection in metals , 1992, IEEE Trans. Signal Process..

[24]  Daniel Raviv A quantitative approach to camera fixation , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Zhigang Fan,et al.  Automated Inspection of Textile Fabrics Using Textural Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  David C. Munson,et al.  A signal processing view of strip-mapping synthetic aperture radar , 1989, IEEE Trans. Acoust. Speech Signal Process..

[27]  W. T. Tucker Linear Estimation and Stochastic Control , 1984 .

[28]  Davi Geiger,et al.  A MRF approach to optical flow estimation , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Kenneth C. Chou A stochastic modelling approach to multiscale signal processing , 1991 .

[30]  Michèle Basseville,et al.  Detection of Abrupt Changes in Signals and Dynamical Systems , 1985 .

[31]  Rama Chellappa,et al.  Classification of textures using Gaussian Markov random fields , 1985, IEEE Trans. Acoust. Speech Signal Process..

[32]  Ofer Zeitouni,et al.  On the wavelet transform of fractional Brownian motion , 1991, IEEE Trans. Inf. Theory.

[33]  J. Sklansky,et al.  Segmentation of people in motion , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[34]  C. J. Kuot,et al.  A LOCAL RELAXATION METHOD FOR SOLVING ELLIPTIC PDEs ON MESH-CONNECTED ARRAYS * , 2022 .

[35]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[36]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[37]  Henrique S. Malvar,et al.  Signal processing with lapped transforms , 1992 .

[38]  A. Mariano Contour Analysis: A New Approach for Melding Geophysical Fields , 1990 .

[39]  J. Marroquín Optimal Bayesian Estimators For Image Segmentation and Surface Reconstruction , 1985 .

[40]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[41]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[42]  K. C. Chou,et al.  Recursive and iterative estimation algorithms for multiresolution stochastic processes , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[43]  Gregory W. Wornell,et al.  Estimation of Fractal Signals from Noisy , 1992 .

[44]  R Pool Making 3-D movies of the heart. , 1991, Science.

[45]  N. Baaziz,et al.  Multigrid motion estimation on pyramidal representations for image sequence coding , 1991 .

[46]  A. Willsky,et al.  An estimation-based approach to the reconstruction of optical flow , 1987 .

[47]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[48]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  W. Clem Karl,et al.  Multiscale representations of Markov random fields , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[50]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[51]  M. M. Lavrentʹev,et al.  Ill-Posed Problems of Mathematical Physics and Analysis , 1986 .

[52]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[54]  M. Luettgen,et al.  Likelihood calculation for a class of multiscale stochastic models , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[55]  Alan S. Willsky,et al.  Construction and applications of discrete-time smoothing error models , 1989 .

[56]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Donald Geman,et al.  Bayes Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[59]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[60]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[61]  R. Chellappa,et al.  Digital image restoration using spatial interaction models , 1982 .

[62]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[63]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[64]  Darrin Taylor,et al.  Parallel estimation on one and two dimensional systems , 1992 .

[65]  Stuart A. Golden,et al.  Identifying multiscale statistical models using the wavelet transform , 1991 .

[66]  P. M. Prenter Splines and variational methods , 1975 .

[67]  Charles BozLman Multispectral Image Segmentation using a Multiscale Model , 1992 .

[68]  M.G. Bellanger,et al.  Digital processing of speech signals , 1980, Proceedings of the IEEE.

[69]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[70]  G. Potamianos,et al.  Stochastic Simulation Techniques for Partition Function Approximation of Gibbs Random Field Images , 1991 .

[71]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[72]  K. C. Chou,et al.  Multiscale recursive estimation, data fusion, and regularization , 1994, IEEE Trans. Autom. Control..

[73]  H. Derin,et al.  Discrete-index Markov-type random processes , 1989, Proc. IEEE.

[74]  A.K. Jain,et al.  Advances in mathematical models for image processing , 1981, Proceedings of the IEEE.

[75]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[76]  D. Walker,et al.  Improved Pel-Recursive Motion Compensation , 1984, IEEE Trans. Commun..

[77]  P. Levy Le mouvement brownien , 1955 .

[78]  Rama Chellappa,et al.  Stochastic and deterministic networks for texture segmentation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[79]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  G. MallatS. A Theory for Multiresolution Signal Decomposition , 1989 .

[81]  Ramine Nikoukhah,et al.  A deterministic and stochastic theory for two-point boundary-value descriptor systems , 1988 .

[82]  Rama Chellappa,et al.  Estimation and choice of neighbors in spatial-interaction models of images , 1983, IEEE Trans. Inf. Theory.

[83]  Jerry L. Prince,et al.  Motion estimation from tagged MR image sequences , 1992, IEEE Trans. Medical Imaging.

[84]  Yu. A. Rosanov On Gaussian Fields with Given Conditional Distributions , 1967 .

[85]  Rama Chellappa,et al.  Texture segmentation with neural networks , 1992 .

[86]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[87]  Ajit Singh,et al.  Incremental estimation of image flow using a Kalman filter , 1992, J. Vis. Commun. Image Represent..

[88]  Edward H. Adelson,et al.  Probability distributions of optical flow , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[89]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[90]  P. L. Dobruschin The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .

[91]  F. Spitzer Markov Random Fields and Gibbs Ensembles , 1971 .

[92]  John W. Woods,et al.  On the relationship of the Markov mesh to the NSHP Markov chain , 1987, Pattern Recognit. Lett..

[93]  Leslie M. Novak,et al.  Optimal speckle reduction in polarimetric SAR imagery , 1990 .

[94]  Eric Dubois,et al.  Estimation of image motion fields: Bayesian formulation and stochastic solution , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[95]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[96]  Patrick A. Kelly,et al.  Adaptive segmentation of speckled images using a hierarchical random field model , 1988, IEEE Trans. Acoust. Speech Signal Process..

[97]  Toshio Mike Chin Dynamic estimation in computational vision , 1992 .

[98]  Martin G. Bello,et al.  A combined Markov random field and wave-packet transform-based approach for image segmentation , 1994, IEEE Trans. Image Process..

[99]  J. D. Robbins,et al.  Motion-compensated television coding: Part I , 1979, The Bell System Technical Journal.

[100]  G. Wornell Wavelet-based representations for the 1/f family of fractal processes , 1993, Proc. IEEE.

[101]  Basilis Gidas,et al.  A Renormalization Group Approach to Image Processing Problems , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[102]  Roland Wilson,et al.  Least-squares image estimation on a multiresolution pyramid , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[103]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[104]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[105]  Roland Wilson,et al.  Kernel Designs for Efficient Multiresolution Edge Detection and Orientation Estimation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[106]  Ravi R. Mazumdar,et al.  Multi-scale representation of stochastic processes using compactly supported wavelets , 1992, [1992] Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis.

[107]  Rama Chellappa,et al.  Unsupervised Texture Segmentation Using Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..