The Zermelo-Voronoi Diagram: a dynamic partition problem

We consider a Dirichlet-Voronoi like partition problem for a small airplane operating in the horizontal plane in the presence of winds that vary uniformly with time. It is shown that the problem can be interpreted as a Dynamic Voronoi Diagram problem, where the generators are not fixed, but rather they are moving targets to be reached in minimum time. The problem is solved by reducing it to a standard Voronoi Diagram by means of a time-varying coordinate transformation.

[1]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[2]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[3]  Leonidas J. Guibas,et al.  Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..

[4]  Robert Bartle,et al.  The Elements of Real Analysis , 1977, The Mathematical Gazette.

[5]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[6]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[7]  Jean Gallier,et al.  Geometric Methods and Applications: For Computer Science and Engineering , 2000 .

[8]  Efstathios Bakolas,et al.  Minimum-Time Paths for a Small Aircraft in the Presence of Regionally-Varying Strong Winds , 2010 .

[9]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[10]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[11]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[12]  Francesco Bullo,et al.  Coordination and Geometric Optimization via Distributed Dynamical Systems , 2003, SIAM J. Control. Optim..

[13]  Jean-Daniel Boissonnat,et al.  Geometric structures for three-dimensional shape representation , 1984, TOGS.

[14]  E. Zermelo Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung , 1931 .

[15]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[16]  Kokichi Sugihara,et al.  Voronoi diagrams in a river , 1992, Int. J. Comput. Geom. Appl..

[17]  H. Kelley Guidance theory and extremal fields , 1962 .

[18]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[19]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[20]  Emilio Frazzoli,et al.  The coverage problem for loitering Dubins vehicles , 2007, 2007 46th IEEE Conference on Decision and Control.

[21]  Olivier Devillers,et al.  Queries on Voronoi Diagrams of Moving Points , 1996, Comput. Geom..

[22]  Kokichi Sugihara,et al.  Voronoi Diagram in the Flow Field , 2003, ISAAC.

[23]  Kokichi Sugihara,et al.  Stable marker-particle method for the Voronoi diagram in a flow field , 2007 .