Directional selectivity and its use in early visual processing

The construction of directionally selective units, and their use in the processing of visual motion, are considered. The zero crossings of ∇2G(x, y) ∗ I(x, y) are located, as in Marr & Hildreth (1980). That is, the image is filtered through centre-surround receptive fields, and the zero values in the output are found. In addition, the time derivative ∂[∇2G(x, y) ∗ l(x, y)]/∂t is measured at the zero crossings, and serves to constrain the local direction of motion to within 180°. The direction of motion can be determined in a second stage, for example by combining the local constraints. The second part of the paper suggests a specific model of the information processing by the X and Y cells of the retina and lateral geniculate nucleus, and certain classes of cortical simple cells. A number of psychophysical and neurophysiological predictions are derived from the theory.

[1]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , .

[2]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[3]  W. Miles Movement Interpretations of the Silhouette of a Revolving Fan , 1931 .

[4]  K. Koffka Principles Of Gestalt Psychology , 1936 .

[5]  R. H. Blackburn PERCEPTION OF MOVEMENT , 1937 .

[6]  W. C. Shipley,et al.  Beta apparent movement under binocular, monocular and interocular stimulation. , 1945, The American journal of psychology.

[7]  S. W. Kuffler Neurons in the retina; organization, inhibition and excitation problems. , 1952, Cold Spring Harbor symposia on quantitative biology.

[8]  C. O. Roelofs,et al.  Some aspects of apparent motion , 1953 .

[9]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[10]  H. Wallach,et al.  The kinetic depth effect. , 1953, Journal of experimental psychology.

[11]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[12]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[13]  J. Gibson,et al.  Motion parallax as a determinant of perceived depth. , 1959, Journal of experimental psychology.

[14]  W. Pitts,et al.  Anatomy and Physiology of Vision in the Frog (Rana pipiens) , 1960, The Journal of general physiology.

[15]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[16]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[17]  H. Maturana,et al.  Directional Movement and Horizontal Edge Detectors in the Pigeon Retina , 1963, Science.

[18]  R. W. Rodieck,et al.  Response of cat retinal ganglion cells to moving visual patterns. , 1965, Journal of neurophysiology.

[19]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[20]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[21]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[22]  G. Horridge,et al.  Perception of Movement by the Crab , 1966, Nature.

[23]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[24]  G. F. Cooper,et al.  The angular selectivity of visual cortical cells to moving gratings , 1968, The Journal of physiology.

[25]  B. Julesz,et al.  Differences between monocular and binocular stroboscopic movement perception. , 1968, Vision research.

[26]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[27]  S. M. Axstis PHI MOVEMENT AS A SUBTRACTION PROCESS , 1970 .

[28]  P. O. Bishop,et al.  Interaction effects of visual contours on the discharge frequency of simple striate neurones , 1971, The Journal of physiology.

[29]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[30]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[31]  P. O. Bishop,et al.  Responses to visual contours: spatio‐temporal aspects of excitation in the receptive fields of simple striate neurones , 1971, The Journal of physiology.

[32]  W. Levick,et al.  Lateral geniculate neurons of cat: retinal inputs and physiology. , 1972, Investigative ophthalmology.

[33]  J. Stone,et al.  Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. , 1972, Journal of neurophysiology.

[34]  V. Ramachandran,et al.  Apparent movement with subjective contours. , 1973, Vision research.

[35]  D. Tolhurst Separate channels for the analysis of the shape and the movement of a moving visual stimulus , 1973, The Journal of physiology.

[36]  W. Levick,et al.  Properties of sustained and transient ganglion cells in the cat retina , 1973, The Journal of physiology.

[37]  O. Braddick The masking of apparent motion in random-dot patterns. , 1973, Vision research.

[38]  C. Enroth-Cugell,et al.  Flux, not retinal illumination, is what cat retinal ganglion cells really care about , 1973, The Journal of physiology.

[39]  C. Enroth-Cugell,et al.  Adaptation and dynamics of cat retinal ganglion cells , 1973, The Journal of physiology.

[40]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[41]  B. Dreher,et al.  Receptive field analysis: responses to moving visual contours by single lateral geniculate neurones in the cat , 1973, The Journal of physiology.

[42]  A. Sillito Proceedings: Effects of the iontophoretic application of bicuculline on the receptive field properties of simple cells in the visual cortex of the cat. , 1974, The Journal of physiology.

[43]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[44]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[45]  A. Sillito The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat's striate cortex. , 1975, The Journal of physiology.

[46]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of striate cortical neurones , 1975, Nature.

[47]  S. Anstis,et al.  Illusory reversal of visual depth and movement during changes of contrast , 1975, Vision Research.

[48]  P. O. Bishop,et al.  Direction selectivity of simple striate cells: properties and mechanism. , 1975, Journal of neurophysiology.

[49]  G. Henry,et al.  Direction selectivity of complex cells in a comparison with simple cells. , 1975, Journal of neurophysiology.

[50]  D. Tolhurst Sustained and transient channels in human vision , 1975, Vision Research.

[51]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[52]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[53]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[54]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[55]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[56]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[57]  B. Breitmeyer,et al.  Temporal studies with flashed gratings: Inferences about human transient and sustained channels , 1977, Vision Research.

[58]  A. Sillito Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex , 1977, The Journal of physiology.

[59]  R. Doty,et al.  Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. , 1977, Journal of neurophysiology.

[60]  H. Wilson,et al.  Threshold visibility of frequency gradient patterns , 1977, Vision Research.

[61]  A. Watson,et al.  Patterns of temporal interaction in the detection of gratings , 1977, Vision Research.

[62]  H. Barlow,et al.  The effects of remote retinal stimulation on the responses of cat retinal ganglion cells. , 1977, The Journal of physiology.

[63]  Robert K. Moore,et al.  Temporal properties of the human visual nervous system , 1977, Vision Research.

[64]  H. Wilson Quantitative characterization of two types of line-spread function near the fovea , 1978, Vision Research.

[65]  G. Legge Sustained and transient mechanisms in human vision: Temporal and spatial properties , 1978, Vision Research.

[66]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[67]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[68]  M. Cynader,et al.  Stereoscopic subsystems for position in depth and for motion in depth , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[69]  P. Lennie,et al.  The mechanism of peripherally evoked responses in retinal ganglion cells. , 1979, The Journal of physiology.

[70]  H. Wässle,et al.  Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. , 1979, The Journal of physiology.

[71]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[72]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[73]  J. Bergen,et al.  A four mechanism model for threshold spatial vision , 1979, Vision Research.

[74]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[75]  D Marr,et al.  Bandpass channels, zero-crossings, and early visual information processing. , 1979, Journal of the Optical Society of America.

[76]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[77]  H. Wilson Spatiotemporal characterization of a transient mechanism in the human visual system , 1980, Vision Research.

[78]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[79]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.