Algorithm 990

For configurations of point-sets that are pairwise constrained by distance intervals, the EASAL software implements a suite of algorithms that characterize the structure and geometric properties of the configuration space. The algorithms generate, describe, and explore these configuration spaces using generic rigidity properties, classical results for stratification of semi-algebraic sets, and new results for efficient sampling by convex parametrization. The article reviews the key theoretical underpinnings, major algorithms, and their implementation. The article outlines the main applications such as the computation of free energy and kinetics of assembly of supramolecular structures or of clusters in colloidal and soft materials. In addition, the article surveys select experimental results and comparisons.

[1]  Miklós Bóna,et al.  Symmetry in Sphere-Based Assembly Configuration Spaces , 2016, Symmetry.

[2]  M. Sitharam,et al.  Best of Both Worlds: Uniform sampling in Cartesian and Cayley Molecular Assembly Configuration Space , 2014, 1409.0956.

[3]  Jose C. Flores-Canales,et al.  Fast and Flexible Geometric Method For Enhancing MC Sampling of Compact Configurations For Protein Docking Problem , 2014, 1408.2481.

[4]  R. Hoy Structure and dynamics of model colloidal clusters with short-range attractions. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  R. McKenna,et al.  Comparative Analysis of Adeno-Associated Virus Capsid Stability and Dynamics , 2013, Journal of Virology.

[6]  O. L. Weaver,et al.  Nucleation in short-range attractive colloids: ordering and symmetry of clusters. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[7]  S. Gortler,et al.  A geometrical approach to computing free-energy landscapes from short-ranged potentials , 2012, Proceedings of the National Academy of Sciences.

[8]  Meera Sitharam,et al.  Robustness measure for an adeno-associated viral shell self-assembly is accurately predicted by configuration space atlasing using EASAL , 2012, BCB.

[9]  Matthew Kahle Sparse Locally-Jammed Disk Packings , 2012 .

[10]  Meera Sitharam,et al.  EASAL (Efficient Atlasing, Analysis and Search of Molecular Assembly Landscapes) , 2012, BICoB.

[11]  Bruce Tidor,et al.  Efficient calculation of molecular configurational entropies using an information theoretic approximation. , 2012, The journal of physical chemistry. B.

[12]  C. O’Hern,et al.  Structure of finite sphere packings via exact enumeration: implications for colloidal crystal nucleation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  J. Doye,et al.  Energy landscapes of colloidal clusters: thermodynamics and rearrangement mechanisms. , 2012, Nanoscale.

[14]  F. Khan,et al.  Physicochemical study of cationic gemini surfactant butanediyl-1,4-bis(dimethyldodecylammonium bromide) with various counterions in aqueous solution , 2012 .

[15]  Matthew Kahle,et al.  Computational topology for configuration spaces of hard disks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Yuliy Baryshnikov,et al.  Min-type Morse theory for configuration spaces of hard spheres , 2011, ArXiv.

[17]  Michael A. Bevan,et al.  Free energy landscapes for colloidal crystal assembly , 2011 .

[18]  D. Wales Energy landscapes of clusters bound by short-ranged potentials. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  Jean-Paul Watson,et al.  Topology of cyclo-octane energy landscape. , 2010, The Journal of chemical physics.

[20]  Meera Sitharam,et al.  Characterizing Graphs with Convex and Connected Cayley Configuration Spaces , 2010, Discret. Comput. Geom..

[21]  H. Grubmüller,et al.  Estimating Absolute Configurational Entropies of Macromolecules: The Minimally Coupled Subspace Approach , 2010, PloS one.

[22]  Matthew Kahle,et al.  Random Geometric Complexes , 2009, Discret. Comput. Geom..

[23]  M. Brenner,et al.  Minimal energy clusters of hard spheres with short range attractions. , 2009, Physical review letters.

[24]  G. Carlsson,et al.  Statistical topology via Morse theory, persistence and nonparametric estimation , 2009, 0908.3668.

[25]  Diego Prada-Gracia,et al.  Exploring the Free Energy Landscape: From Dynamics to Networks and Back , 2009, PLoS Comput. Biol..

[26]  Jiguo Su,et al.  Uncovering the Properties of Energy-Weighted Conformation Space Networks with a Hydrophobic-Hydrophilic Model , 2009, International journal of molecular sciences.

[27]  L. Guibas,et al.  Topological methods for exploring low-density states in biomolecular folding pathways. , 2008, The Journal of chemical physics.

[28]  Jun Tan,et al.  Efficient calculation of configurational entropy from molecular simulations by combining the mutual‐information expansion and nearest‐neighbor methods , 2008, J. Comput. Chem..

[29]  Juan Jesús Pérez,et al.  Complete maps of molecular‐loop conformational spaces , 2007, J. Comput. Chem..

[30]  Michael K Gilson,et al.  Extraction of configurational entropy from molecular simulations via an expansion approximation. , 2007, The Journal of chemical physics.

[31]  Guido Caldarelli,et al.  Uncovering the topology of configuration space networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Harshinder Singh,et al.  Nearest‐neighbor nonparametric method for estimating the configurational entropy of complex molecules , 2007, J. Comput. Chem..

[33]  Dinesh Manocha,et al.  Topology preserving approximation of free configuration space , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[34]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[35]  Herbert Edelsbrunner,et al.  Local Search Heuristic for Rigid Protein Docking , 2004, WABI.

[36]  F. Stillinger,et al.  Jamming in hard sphere and disk packings , 2004 .

[37]  Ruth Nussinov,et al.  Efficient Unbound Docking of Rigid Molecules , 2002, WABI.

[38]  Ioan Andricioaei,et al.  On the calculation of entropy from covariance matrices of the atomic fluctuations , 2001 .

[39]  T. Conlon,et al.  Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism , 2000, Journal of Virology.

[40]  S. Basu,et al.  COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY , 1999 .

[41]  Michael K. Gilson,et al.  ''Mining minima'': Direct computation of conformational free energy , 1997 .

[42]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[43]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[44]  E. Katchalski‐Katzir,et al.  Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[45]  John F. Canny,et al.  Computing Roadmaps of General Semi-Algebraic Sets , 1991, Comput. J..

[46]  John F. Canny,et al.  A new algebraic method for robot motion planning and real geometry , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[47]  M. Karplus,et al.  Method for estimating the configurational entropy of macromolecules , 1981 .

[48]  Tzee-Char Kuo,et al.  On Thom-Whitney stratification theory , 1978 .

[49]  Janet E. Jones On the determination of molecular fields. III.—From crystal measurements and kinetic theory data , 1924 .

[50]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[51]  J. Maxwell,et al.  XLV. On reciprocal figures and diagrams of forces , 1864 .

[52]  C. Peirce An unpublished manuscript) , 2016 .

[53]  Simonis Priscilla,et al.  アフリカのカミキリムシ科Prosopocera lactator(Cerambycidae)の緑がかった白スケール内の光子多結晶 , 2012 .

[54]  Léonard Jaillet,et al.  Path Planning with Loop Closure Constraints Using an Atlas-Based RRT , 2011, ISRR.

[55]  James Clerk Maxwell,et al.  The Scientific Papers of James Clerk Maxwell: On Reciprocal Figures and Diagrams of Forces , 2011 .

[56]  H. Edelsbrunner,et al.  Accurate Protein Docking by Shape Complementarity Alone , 2022 .