Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling.

Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF3. With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li+/Li for LiAlF4, excellent stability was achieved for high Ni content LiNi0.8Mn0.1Co0.1O2 electrodes with LiAlF4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li+/Li.

[1]  R. Holze,et al.  Cathode materials modified by surface coating for lithium ion batteries , 2006 .

[2]  Mengyun Nie,et al.  A Study of Li-Ion Cells Operated to 4.5 V and at 55°C , 2016 .

[3]  M. Ritala,et al.  Atomic Layer Deposition of LiF Thin Films from Lithd, Mg(thd)2, and TiF4 Precursors , 2013 .

[4]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[5]  Vincent Chevrier,et al.  Understanding Anomalous Behavior in Coulombic Efficiency Measurements on Li-Ion Batteries , 2015 .

[6]  E. Zhecheva,et al.  Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes , 2001 .

[7]  Doron Aurbach,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[8]  Min-Joon Lee,et al.  Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. , 2015, Angewandte Chemie.

[9]  T. Oi,et al.  Amorphous thin film ionic conductors of mLiF.nAlF3 , 1981 .

[10]  Arumugam Manthiram,et al.  A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries , 2017 .

[11]  Byungwoo Park,et al.  Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell , 2000 .

[12]  Yong Yang,et al.  A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating , 2004 .

[13]  T. Aaltonen,et al.  Atomic layer deposition of lithium containing thin films , 2009 .

[14]  J. Cabana,et al.  Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries , 2014 .

[15]  T. Oi Ionic conductivity of LiF thin films containing Di- or trivalent metal fluorides , 1984 .

[16]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[17]  Seung M. Oh,et al.  A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries , 2016 .

[18]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[19]  G. Hwang,et al.  Structure and Properties of LiSi Alloys : A First-Principles Study , 2011 .

[20]  Yang-Kook Sun,et al.  Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. , 2005, Journal of the American Chemical Society.

[21]  Min-Joon Lee,et al.  Nickel‐Rich Layered Lithium Transition‐Metal Oxide for High‐Energy Lithium‐Ion Batteries , 2015 .

[22]  Hong Wang,et al.  Effect of LiFePO4 coating on electrochemical performance of LiCoO2 at high temperature , 2007 .

[23]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[24]  Yueming Zhou,et al.  All solid state electrochromic device: WO3/LiAlF4:Li/VO2 , 1995, Optics & Photonics.

[25]  A. Pearse,et al.  Atomic Layer Deposition of the Solid Electrolyte LiPON , 2015 .

[26]  Marca M. Doeff,et al.  A review of Ni-based layered oxides for rechargeable Li-ion batteries , 2017 .

[27]  Jou-Hyeon Ahn,et al.  for Rechargeable Lithium Batteries , 2009 .

[28]  Ji‐Guang Zhang,et al.  Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries , 2012 .

[29]  Andrew J. Morris,et al.  Thermodynamically stable lithium silicides and germanides from density functional theory calculations , 2014, 1402.6233.

[30]  T. Oi,et al.  Electrochromism of WO3/LiAlF4/LiIn thin‐film overlayers , 1982 .

[31]  B. Polzin,et al.  Functioning Mechanism of AlF3 Coating on the Li- and Mn-Rich Cathode Materials , 2014 .

[32]  Hui Cao,et al.  LiAlO-coated LiCoO as cathode material for lithium ion batteries , 2005 .

[33]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[34]  Khalil Amine,et al.  Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries , 2001 .

[35]  Robert C. Tenent,et al.  Improved Durability of WO3 Nanocomposite Films Using Atomic Layer and Vapor Deposited Coatings , 2012 .

[36]  B. G. Searle,et al.  Electronic structure of Lewis acid sites on high surface area aluminium fluorides: a combined XPS and ab initio investigation. , 2009, Physical chemistry chemical physics : PCCP.

[37]  K. Livi,et al.  Analytical transmission electron microscopy , 2014 .

[38]  Bruno Scrosati,et al.  The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li‐Enriched Nickel‐Manganese Oxide Electrodes for Li‐Ion Batteries , 2012, Advanced materials.

[39]  S. Ong,et al.  Thermal Stabilities of Delithiated Olivine MPO[subscript 4] (M=Fe,Mn) Cathodes investigated using First Principles Calculations , 2010 .

[40]  L. Downie,et al.  Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode Material for Lithium Ion Batteries , 2015 .

[41]  H. Fjellvåg,et al.  Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition , 2016 .

[42]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[43]  T. Leichtweiss,et al.  Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. , 2016, Nature chemistry.

[44]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[45]  J. Holopainen,et al.  Lithium Phosphate Thin Films Grown by Atomic Layer Deposition , 2012 .

[46]  Seung M. Oh,et al.  Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li2ZrO3 Surface Coating for Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[47]  K. Amine,et al.  AlF3-Coating to Improve High Voltage Cycling Performance of Li [ Ni1 ∕ 3Co1 ∕ 3Mn1 ∕ 3 ] O2 Cathode Materials for Lithium Secondary Batteries , 2007 .

[48]  Feng Wu,et al.  Effect of Ni(2+) content on lithium/nickel disorder for Ni-rich cathode materials. , 2015, ACS applied materials & interfaces.

[49]  S. Ong,et al.  Li-Fe-PO 2 Phase Diagram from First Principles Calculations , 2008 .

[50]  Jaephil Cho,et al.  A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. , 2013, Nano letters.

[51]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[52]  Feng Lin,et al.  Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries , 2014, Nature Communications.

[53]  Steven M. George,et al.  Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition , 2010 .

[54]  H. Fjellvåg,et al.  Atomic layer deposition of lithium nitride and carbonate using lithium silylamide , 2012 .

[55]  Efthimios Kaxiras,et al.  Theory of structural transformation in lithiated amorphous silicon. , 2014, Nano letters.

[56]  Nam-Soon Choi,et al.  Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries , 2015 .

[57]  J. Croy,et al.  Amorphous Metal Fluoride Passivation Coatings Prepared by Atomic Layer Deposition on LiCoO2 for Li-Ion Batteries , 2015 .

[58]  Mikko Ritala,et al.  Atomic Layer Deposition of LiF Thin Films from Lithd and TiF4 Precursors , 2013 .

[59]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[60]  M. R. Palacín,et al.  Why do batteries fail? , 2016, Science.

[61]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[62]  S. Trussler,et al.  Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries , 2010 .

[63]  Yue Qi,et al.  Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO2/Al2O3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling. , 2016, The journal of physical chemistry. A.

[64]  Kang Xu,et al.  Interfacing electrolytes with electrodes in Li ion batteries , 2011 .

[65]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[66]  Mikko Heikkilä,et al.  Atomic Layer Deposition of AlF3 Thin Films Using Halide Precursors , 2015 .