Recursive parameter identification of the dynamical models for bilinear state space systems

This paper investigates the recursive parameter and state estimation algorithms for a special class of nonlinear systems (i.e., bilinear state space systems). A state observer-based stochastic gradient (O-SG) algorithm is presented for the bilinear state space systems by using the gradient search. In order to improve the parameter estimation accuracy and the convergence rate of the O-SG algorithm, a state observer-based multi-innovation stochastic gradient algorithm and a state observer-based recursive least squares identification algorithm are derived by means of the multi-innovation theory. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed algorithms.

[1]  S. Hara,et al.  Minimal order state observers for bilinear systems , 1976 .

[2]  Kon Max Wong,et al.  Bilinear system identification by block pulse functions , 1981 .

[3]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[4]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[5]  N. Sinha,et al.  Robust recursive least-squares method with modified weights for bilinear system identification , 1989 .

[6]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .

[7]  J. Juang Applied system identification , 1994 .

[8]  Jer-Nan Juang,et al.  Continuous-Time Bilinear System Identification , 2005 .

[9]  Rik Pintelon,et al.  Blind maximum likelihood identification of Hammerstein systems , 2008, Autom..

[10]  Paulo J. Lopes dos Santos,et al.  Identification of Bilinear Systems With White Noise Inputs: An Iterative Deterministic-Stochastic Subspace Approach , 2009, IEEE Transactions on Control Systems Technology.

[11]  Jun Ma,et al.  Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems , 2010, Appl. Math. Comput..

[12]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[13]  Jun Ma,et al.  Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system , 2011 .

[14]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[15]  Richard W. Longman,et al.  Identification of discrete-time bilinear systems through equivalent linear models , 2012 .

[16]  Johan A. K. Suykens,et al.  Identification of the Silverbox Benchmark Using Nonlinear State-Space Models , 2012 .

[17]  Feng Ding,et al.  Performance Analysis of the Auxiliary Model-Based Stochastic Gradient Parameter Estimation Algorithm for State-Space Systems with One-Step State Delay , 2013, Circuits Syst. Signal Process..

[18]  Baibing Li,et al.  State estimation with partially observed inputs: A unified Kalman filtering approach , 2013, Autom..

[19]  Richard W. Longman,et al.  Linear state representations for identification of bilinear discrete-time models by interaction matrices , 2014 .

[20]  Long Huang,et al.  Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems , 2014, Complex..

[21]  Jer-Nan Juang,et al.  System identification for a general class of observable and reachable bilinear systems , 2014 .

[22]  F. Ding,et al.  Least squares algorithm for an input nonlinear system with a dynamic subspace state space model , 2014 .

[23]  Feng Ding,et al.  State filtering and parameter estimation for state space systems with scarce measurements , 2014, Signal Process..

[24]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[25]  Richard W. Longman,et al.  A Linear-Time-Varying Approach for Exact Identification of Bilinear Discrete-Time Systems by Interaction Matrices , 2014 .

[26]  Tülay Adali,et al.  Unbiased Recursive Least-Squares Estimation Utilizing Dichotomous Coordinate-Descent Iterations , 2014, IEEE Transactions on Signal Processing.

[27]  Richard W. Longman,et al.  Optimal bilinear observers for bilinear state-space models by interaction matrices , 2015, Int. J. Control.

[28]  Feng Ding,et al.  Recursive and iterative least squares parameter estimation algorithms for observability canonical state space systems , 2015, J. Frankl. Inst..

[29]  Hajime Ase,et al.  A subspace-based identification of Wiener–Hammerstein benchmark model , 2015 .

[30]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[31]  J. Vörös Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle , 2015 .

[32]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[33]  Wei Zhang,et al.  Improved least squares identification algorithm for multivariable Hammerstein systems , 2015, J. Frankl. Inst..

[34]  F. Ding,et al.  Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique , 2015 .

[35]  Dongqing Wang,et al.  Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models , 2016, Appl. Math. Lett..

[36]  Feng Ding,et al.  Parameter estimation algorithms for multivariable Hammerstein CARMA systems , 2016, Inf. Sci..

[37]  Wan Xiangkui,et al.  A T-wave alternans assessment method based on least squares curve fitting technique , 2016 .

[38]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..

[39]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[40]  F. Ding,et al.  Performance analysis of the generalised projection identification for time-varying systems , 2016 .

[41]  Qingxia Li,et al.  Array Factor Forming for Image Reconstruction of One-Dimensional Nonuniform Aperture Synthesis Radiometers , 2016, IEEE Geoscience and Remote Sensing Letters.

[42]  Jian Pan,et al.  Image noise smoothing using a modified Kalman filter , 2016, Neurocomputing.

[43]  Feng Ding,et al.  The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique , 2016, Signal Process..

[44]  Hao Wu,et al.  An adaptive confidence limit for periodic non-steady conditions fault detection , 2016 .

[45]  Feng Ding,et al.  A novel parameter separation based identification algorithm for Hammerstein systems , 2016, Appl. Math. Lett..

[46]  Erfu Yang,et al.  Least Squares-Based Iterative Identification Methods for Linear-in-Parameters Systems Using the Decomposition Technique , 2016, Circuits Syst. Signal Process..

[47]  Yide Wang,et al.  Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter. , 2016, ISA transactions.

[48]  Feng Ding,et al.  Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle , 2017, IET Signal Process..

[49]  Feng Ding,et al.  Recursive Least Squares and Multi-innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling , 2017, Circuits Syst. Signal Process..

[50]  Feng Ding,et al.  A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay , 2017, Signal Process..

[51]  Feng Ding,et al.  Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering , 2017, J. Frankl. Inst..