Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits

We report on a hybrid 12-dimensional full body state estimator for a hexapod robot executing a jogging gait in steady state on level terrain with regularly alternating ground contact and aerial phases of motion. We use a repeating sequence of continuous time dynamical models that are switched in and out of an extended Kalman filter to fuse measurements from a novel leg pose sensor and inertial sensors. Our inertial measurement unit supplements the traditionally paired three-axis rate gyro and three-axis accelerometer with a set of three additional three-axis accelerometer suites, thereby providing additional angular acceleration measurement, avoiding the need for localization of the accelerometer at the center of mass on the robot's body, and simplifying installation and calibration. We implement this estimation procedure offline, using data extracted from numerous repeated runs of the hexapod robot RHex (bearing the appropriate sensor suite) and evaluate its performance with reference to a visual ground-truth measurement system, comparing as well the relative performance of different fusion approaches implemented via different model sequences

[1]  A. King,et al.  Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers , 1975 .

[2]  Hugh F. Durrant-Whyte,et al.  Inertial navigation systems for mobile robots , 1995, IEEE Trans. Robotics Autom..

[3]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[4]  Hugh F. Durrant-Whyte,et al.  A high integrity IMU/GPS navigation loop for autonomous land vehicle applications , 1999, IEEE Trans. Robotics Autom..

[5]  Henrik I. Christensen,et al.  Triangulation-based fusion of sonar data with application in robot pose tracking , 2000, IEEE Trans. Robotics Autom..

[6]  Martin Buehler,et al.  Stable Stair Climbing in a Simple Hexapod Robot , 2001 .

[7]  Martin Buehler,et al.  Towards pronking with a hexapod robot , 2001 .

[8]  Hugh F. Durrant-Whyte,et al.  The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications , 2001, IEEE Trans. Robotics Autom..

[9]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[10]  H. Benjamin Brown,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. RHex: A Biologically Inspired Hexapod Runner ∗ , 2022 .

[11]  P. J. Escamilla-Ambrosio,et al.  A hybrid Kalman filter-fuzzy logic architecture for multisensor data fusion , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[12]  Daniel E. Koditschek,et al.  Proprioception based behavioral advances in a hexapod robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[13]  Ren C. Luo,et al.  Multilevel multisensor based decision fusion for intelligent animal robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  Daniel E. Koditschek,et al.  Back flips with a hexapedal robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[15]  Stergios I. Roumeliotis,et al.  Augmenting inertial navigation with image-based motion estimation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[16]  Daniel E. Koditschek,et al.  Dynamic locomotion with a hexapod robot , 2002 .

[17]  Mohamed Abdelrahman,et al.  Integration of multiple sensor fusion in controller design , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[18]  Daniel E. Koditschek,et al.  Template based control of hexapedal running , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[19]  Martin Buehler,et al.  Stair descent in the simple hexapod 'RHex' , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[20]  N. Neville,et al.  Towards bipedal running of a six-legged robot , 2003 .

[21]  Daniel E. Koditschek,et al.  A leg configuration sensory system for dynamical body state estimates in a hexapod robot , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[22]  Philip Holmes,et al.  Stability Analysis of a Clock-Driven Rigid-Body SLIP Model for RHex , 2004, Int. J. Robotics Res..

[23]  Daniel E. Koditschek,et al.  Automated gait adaptation for legged robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[24]  Daniel E. Koditschek,et al.  Toward a 6 DOF body state estimator for a hexapod robot with dynamical gaits , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[25]  Daniel E. Koditschek,et al.  Legged Odometry from Body Pose in a Hexapod Robot , 2004, ISER.

[26]  Daniel E. Koditschek,et al.  Model-Based Dynamic Self-Righting Maneuvers for a Hexapedal Robot , 2004, Int. J. Robotics Res..

[27]  Daniel E. Koditschek,et al.  A framework for the coordination of legged robot gaits , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[28]  Daniel E. Koditschek,et al.  A leg configuration measurement system for full-body pose estimates in a hexapod robot , 2005, IEEE Transactions on Robotics.

[29]  Daniel E. Koditschek,et al.  Proprioceptive sensing for a legged robot , 2005 .

[30]  Howie Choset,et al.  A Context-Based State Estimation Technique for Hybrid Systems , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[31]  M. Buehler,et al.  Gait Generation and Optimization for Legged Robots , 2020 .