Set approximations in fuzzy formal concept analysis

Formal concept analysis and rough set theory are two important tools in knowledge representation and knowledge discovery in relational information systems. The purpose of this paper is to study rough set approximations within formal concept analysis in fuzzy environment. Properties of existent fuzzy concept lattices derived from an adjoint pair of operations are first reviewed and examined. Based on both lattice-theoretic and fuzzy set-theoretic operators, two new pairs of rough fuzzy set approximations within fuzzy formal contexts are then defined. Finally, properties of the rough fuzzy set approximation operators are presented in detail.

[1]  Ivo Düntsch,et al.  Modal-style operators in qualitative data analysis , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[2]  Laurent Chaudron,et al.  Generalized Formal Concept Analysis , 2000, ICCS.

[3]  Yiyu Yao,et al.  A Comparative Study of Fuzzy Sets and Rough Sets , 1998 .

[4]  Andrei Popescu,et al.  Non-dual fuzzy connections , 2004, Arch. Math. Log..

[5]  Radim Bělohlávek,et al.  Lattices of Fixed Points of Fuzzy Galois Connections , 2001 .

[6]  Jitender S. Deogun,et al.  Monotone concepts for formal concept analysis , 2004, Discret. Appl. Math..

[7]  Yiyu Yao,et al.  Rough set approximations in formal concept analysis , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[8]  Robert E. Kent,et al.  Rough Concept Analysis: A Synthesis of Rough Sets and Formal Concept Analysis , 1996, Fundam. Informaticae.

[9]  Bernhard Ganter,et al.  Conceptual Structures: Logical, Linguistic, and Computational Issues , 2000, Lecture Notes in Computer Science.

[10]  Radim Belohlávek,et al.  Logical Precision in Concept Lattices , 2002, J. Log. Comput..

[11]  Ramón Fuentes-González,et al.  Concept lattices defined from implication operators , 2000, Fuzzy Sets Syst..

[12]  Ming-Wen Shao,et al.  Approximation in Formal Concept Analysis , 2005, RSFDGrC.

[13]  Karl Erich Wolff,et al.  A Conceptual View of Knowledge Bases in Rough Set Theory , 2000, Rough Sets and Current Trends in Computing.

[14]  Wei Xu,et al.  Fuzzy inference based on fuzzy concept lattice , 2006, Fuzzy Sets Syst..

[15]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[16]  R. Belohlávek Fuzzy Closure Operators , 2001 .

[17]  Nehad N. Morsi,et al.  Axiomatics for fuzzy rough sets , 1998, Fuzzy Sets Syst..

[18]  Andrei Popescu,et al.  A general approach to fuzzy concepts , 2004, Math. Log. Q..

[19]  Bernhard Ganter,et al.  Formal Concept Analysis , 1999, Springer Berlin Heidelberg.

[20]  Yiyu Yao,et al.  A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis , 2004, Rough Sets and Current Trends in Computing.

[21]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[22]  D. Dubois,et al.  Twofold fuzzy sets and rough sets—Some issues in knowledge representation , 1987 .

[23]  Yiyu Yao,et al.  Concept lattices in rough set theory , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[24]  Wei-Zhi Wu,et al.  Generalized fuzzy rough sets , 2003, Inf. Sci..

[25]  Jitender S. Deogun,et al.  Formal Rough Concept Analysis , 1999, RSFDGrC.

[26]  Ju Wang,et al.  Concept Approximation in Concept Lattice , 2001, PAKDD.

[27]  Radim Belohlávek,et al.  Fuzzy Galois Connections , 1999, Math. Log. Q..

[28]  Ramón Fuentes-González,et al.  Construction of the L-fuzzy concept lattice , 1998, Fuzzy Sets Syst..

[29]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[30]  Anna Maria Radzikowska,et al.  A comparative study of fuzzy rough sets , 2002, Fuzzy Sets Syst..