Singularity-robustness and task-prioritization in configuration control of redundant robots

The authors present a singularity-robust task-prioritized reformulation of the configuration control for redundant robot manipulators. This reformation suppresses large joint velocities to induce minimal errors in the task performance by modifying the task trajectories. Furthermore, the same framework provides a means for assignment of priorities between the basic task of end-effector motion and the user-defined additional task for utilizing redundancy. This allows automatic relaxation of the additional task constraints in favor of the desired end-effector motion when both cannot be achieved exactly.<<ETX>>

[1]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[2]  Homayoun Seraji,et al.  Configuration control of redundant manipulators: theory and implementation , 1989, IEEE Trans. Robotics Autom..

[3]  L. Sciavicco,et al.  A dynamic solution to the inverse kinematic problem for redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[4]  Charles W. Wampler,et al.  Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[6]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[7]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[8]  Charles W. Wampler,et al.  Inverse kinematic functions for redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[9]  Homayoun Seraji A new approach to global control of redundant manipulators , 1989 .

[10]  David E. Orin,et al.  An inverse kinematic solution for kinematically redundant robot manipulators , 1984, J. Field Robotics.

[11]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[12]  J. Burdick,et al.  Characterization and control of self-motions in redundant manipulators , 1989 .

[13]  Anthony A. Maciejewski,et al.  Numerical filtering for the operation of robotic manipulators through kinematically singular configurations , 1988, J. Field Robotics.

[14]  Larry Leifer,et al.  Applications of Damped Least-Squares Methods to Resolved-Rate and Resolved-Acceleration Control of Manipulators , 1988 .

[15]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[16]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[17]  R. Colbaugh,et al.  Improved configuration control for redundant robots , 1990, J. Field Robotics.

[18]  John M. Hollerbach,et al.  Redundancy resolution of manipulators through torque optimization , 1987, IEEE J. Robotics Autom..

[19]  Homayoun Seraji,et al.  Kinematic functions for the 7 DOF robotics research arm , 1989 .

[20]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .

[21]  S. Shankar Sastry,et al.  Dynamic Control of Redundant Manipulators , 1988, 1988 American Control Conference.

[22]  Olav Egeland,et al.  Cartesian control of a hydraulic redundant manipulator , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[23]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[25]  Homayoun Seraji,et al.  Case studies in configuration control for redundant robots , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.