U-FNO - an enhanced Fourier neural operator based-deep learning model for multiphase flow

[1]  M. Sahimi,et al.  Simulating fluid flow in complex porous materials by integrating the governing equations with deep-layered machines , 2021, npj Computational Materials.

[2]  M. Blunt,et al.  Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media , 2021, Scientific Reports.

[3]  H. Tchelepi,et al.  Physics Informed Deep Learning for Flow and Transport in Porous Media , 2021, Day 1 Tue, October 26, 2021.

[4]  S. Benson,et al.  CCSNet: a deep learning modeling suite for CO2 storage , 2021, ArXiv.

[5]  Rui Qiao,et al.  Physics-constrained deep learning for data assimilation of subsurface transport , 2021, Energy and AI.

[6]  Pejman Tahmasebi,et al.  Deep residual U-net convolution neural networks with autoregressive strategy for fluid flow predictions in large-scale geosystems , 2021 .

[7]  Sally M. Benson,et al.  Towards a predictor for CO2 plume migration using deep neural networks , 2021 .

[8]  Nikola B. Kovachki,et al.  Fourier Neural Operator for Parametric Partial Differential Equations , 2020, ICLR.

[9]  Nikola B. Kovachki,et al.  Model Reduction and Neural Networks for Parametric PDEs , 2020, The SMAI journal of computational mathematics.

[10]  Hari S. Viswanathan,et al.  A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media , 2021, J. Comput. Phys..

[11]  M. Sahimi,et al.  Machine learning in geo- and environmental sciences: From small to large scale , 2020, Advances in Water Resources.

[12]  Louis J. Durlofsky,et al.  Deep-learning-based surrogate flow modeling and geological parameterization for data assimilation in 3D subsurface flow , 2020, Computer Methods in Applied Mechanics and Engineering.

[13]  Nikola B. Kovachki,et al.  Multipole Graph Neural Operator for Parametric Partial Differential Equations , 2020, NeurIPS.

[14]  R. Juanes,et al.  SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks , 2020, Computer Methods in Applied Mechanics and Engineering.

[15]  Kamyar Azizzadenesheli,et al.  Neural Operator: Graph Kernel Network for Partial Differential Equations , 2020, ICLR 2020.

[16]  Louis J. Durlofsky,et al.  A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems , 2019, J. Comput. Phys..

[17]  H. Tchelepi,et al.  Physics Based Deep Learning for Nonlinear Two-Phase Flow in Porous Media , 2020 .

[18]  George Em Karniadakis,et al.  DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators , 2019, ArXiv.

[19]  Zhi Zhong,et al.  Predicting CO2 Plume Migration in Heterogeneous Formations Using Conditional Deep Convolutional Generative Adversarial Network , 2019, Water Resources Research.

[20]  S. Benson,et al.  CO2 plume migration and dissolution in layered reservoirs , 2019, International Journal of Greenhouse Gas Control.

[21]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[22]  Paris Perdikaris,et al.  Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data , 2019, J. Comput. Phys..

[23]  Jichun Wu,et al.  Deep Convolutional Encoder‐Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media , 2018, Water Resources Research.

[24]  Nicholas Zabaras,et al.  Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification , 2018, J. Comput. Phys..

[25]  P. Kitanidis Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport , 2015 .

[26]  Sally M. Benson,et al.  CO2 Plume Tracking and History Matching Using Multilevel Pressure Monitoring at the Illinois Basin – Decatur Project , 2014 .

[27]  S. Benson,et al.  Influence of capillary-pressure models on CO2 solubility trapping , 2013 .

[28]  Mladen Jurak,et al.  Numerical simulation of gas migration through engineered and geological barriers for a deep repository for radioactive waste , 2012, Comput. Vis. Sci..

[29]  S. Benson,et al.  Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions , 2011 .

[30]  Michael Kühn,et al.  The impact of heterogeneity on the distribution of CO2: Numerical simulation of CO2 storage at Ketzin , 2010 .

[31]  Christine Doughty,et al.  Investigation of CO2 Plume Behavior for a Large-Scale Pilot Test of Geologic Carbon Storage in a Saline Formation , 2010 .

[32]  S. Carpentier,et al.  Conservation of lateral stochastic structure of a medium in its simulated seismic response , 2009 .

[33]  Alexandre Boucher,et al.  Applied Geostatistics with SGeMS: A User's Guide , 2009 .

[34]  H. Pape,et al.  Variation of Permeability with Porosity in Sandstone Diagenesis Interpreted with a Fractal Pore Space Model , 2000 .

[35]  K. Pruess,et al.  TOUGH2 User's Guide Version 2 , 1999 .

[36]  S. F. Ashby,et al.  Modeling groundwater flow and contaminant transport , 1999 .

[37]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[38]  Moataz O. Abu-Al-Saud,et al.  Prediction of porous media fluid flow using physics informed neural networks , 2022 .