Controllability and trajectory tracking for classes of cascade-form second order nonholonomic systems

We discuss classes of nonlinear systems with drift that can be reduced to the cascade of a linear system and a drift-free nonholonomic system. Building on previous work with amplitude-modulated sinusoids for trajectory tracking in drift-free systems, we present algorithms for configuration trajectory tracking in these dynamic settings. Results are demonstrated in simulation for representative examples.

[1]  A. D. Lewis,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997 .

[2]  Naomi Ehrich Leonard,et al.  Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..

[3]  H. Sussmann,et al.  Local controllability and motion planning for some classes of systems with drift , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[4]  A. Bloch,et al.  Nonholonomic Control Systems on Riemannian Manifolds , 1995 .

[5]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[6]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[7]  H. Sussmann A general theorem on local controllability , 1987 .

[8]  Arjan van der Schaft,et al.  Dynamics and control of a class of underactuated mechanical systems , 1999, IEEE Trans. Autom. Control..

[9]  Olav Egeland,et al.  Feedback Control of a Nonholonomic Underwater Vehicle With a Constant Desired Configuration , 1996, Int. J. Robotics Res..

[10]  Kevin M. Lynch,et al.  Kinematic controllability and decoupled trajectory planning for underactuated mechanical systems , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  A. D. Lewis,et al.  When is a mechanical control system kinematic? , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[12]  Naomi Ehrich Leonard Periodic forcing, dynamics and control of underactuated spacecraft and underwater vehicles , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[13]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[14]  G. Campion,et al.  Controllability and State Feedback Stabilizability of Nonholonomic Mechanical Systems , 1991 .

[15]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[16]  O. J. Sørdalen,et al.  Exponential stabilization of nonholonomic chained systems , 1995, IEEE Trans. Autom. Control..

[17]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[18]  Wensheng Liu,et al.  An Approximation Algorithm for Nonholonomic Systems , 1997 .

[19]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[20]  A. Isidori Nonlinear Control Systems , 1985 .

[21]  Naoji Shiroma,et al.  Nonholonomic control of a three-DOF planar underactuated manipulator , 1998, IEEE Trans. Robotics Autom..

[22]  Roger W. Brockett,et al.  Characteristic Phenomena and Model Problems in Nonlinear Control , 1996 .