A PSPACE-complete Sperner Triangle Game
暂无分享,去创建一个
[1] Xi Chen,et al. Computing Nash Equilibria: Approximation and Smoothed Complexity , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[2] L. Brouwer. Über Abbildung von Mannigfaltigkeiten , 1911 .
[3] Xiaotie Deng,et al. Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[4] David Lichtenstein,et al. GO Is Polynomial-Space Hard , 1980, JACM.
[5] Stefan Reisch,et al. Hex ist PSPACE-vollständig , 1981, Acta Informatica.
[6] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .
[7] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[8] D. Gale. The Game of Hex and the Brouwer Fixed-Point Theorem , 1979 .