Enumerating the Nash equilibria of rank 1-games

A bimatrix game $(A,B)$ is called a game of rank $k$ if the rank of the matrix $A+B$ is at most $k$. We consider the problem of enumerating the Nash equilibria in (non-degenerate) games of rank 1. In particular, we show that even for games of rank 1 not all equilibria can be reached by a Lemke-Howson path and present a parametric simplex-type algorithm for enumerating all Nash equilibria of a non-degenerate game of rank 1.

[1]  B. M. Mukhamediev,et al.  The solution of bilinear programming problems and finding the equilibrium situations in bimatrix games , 1978 .

[2]  Thorsten Theobald,et al.  Games of fixed rank: a hierarchy of bimatrix games , 2005, SODA '07.

[3]  C. B. Millham,et al.  On a class of nash‐solvable bimatrix games and some related nash subsets , 1980 .

[4]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[5]  H. Kuk On equilibrium points in bimatrix games , 1996 .

[6]  L. Shapley A note on the Lemke-Howson algorithm , 1974 .

[7]  Thorsten Theobald Geometrie und Kombinatorik von Nash-Gleichgewichten , 2005 .

[8]  Hiroshi Konno,et al.  Linear multiplicative programming , 1992, Math. Program..

[9]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[10]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[11]  M. Jansen Maximal nash subsets for bimatrix games , 1981 .

[12]  P. T. Thach,et al.  Optimization on Low Rank Nonconvex Structures , 1996 .

[13]  Vijaykumar Aggarwal,et al.  On the generation of all equilibrium points for bimatrix games through the Lemke—Howson Algorithm , 1973, Math. Program..

[14]  Pierre Hansen,et al.  Enumeration of All Extreme Equilibria of Bimatrix Games , 1996, SIAM J. Sci. Comput..

[15]  Xi Chen,et al.  Computing Nash Equilibria: Approximation and Smoothed Complexity , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[16]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[17]  O. Mangasarian,et al.  Two-person nonzero-sum games and quadratic programming , 1964 .

[18]  Bernhard von Stengel,et al.  New Maximal Numbers of Equilibria in Bimatrix Games , 1999, Discret. Comput. Geom..

[19]  Vincent Conitzer,et al.  Complexity Results about Nash Equilibria , 2002, IJCAI.

[20]  N. Vorob’ev Equilibrium Points in Bimatrix Games , 1958 .

[21]  P. Gács,et al.  Algorithms , 1992 .

[22]  Harlan D. Mills,et al.  Equilibrium Points in Finite Games , 1960 .

[23]  C. B. Millham,et al.  On nash subsets of bimatrix games , 1974 .

[24]  B. Stengel,et al.  COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .

[25]  Christos H. Papadimitriou,et al.  Algorithms, Games, and the Internet , 2001, ICALP.