Satisfiability modulo theories
暂无分享,去创建一个
Nikolaj Bjørner | Leonardo Mendonça de Moura | L. D. Moura | N. Bjørner | Leonardo Mendonça de Moura | Nikolaj S. Bjørner | Nikolaj S. Bjørner
[1] John McCarthy,et al. Towards a Mathematical Science of Computation , 1962, IFIP Congress.
[2] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.
[3] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[4] Greg Nelson,et al. Simplification by Cooperating Decision Procedures , 1979, TOPL.
[5] Derek C. Oppen,et al. Complexity, Convexity and Combinations of Theories , 1980, Theor. Comput. Sci..
[6] Robert E. Tarjan,et al. Variations on the Common Subexpression Problem , 1980, J. ACM.
[7] Natarajan Shankar,et al. PVS: A Prototype Verification System , 1992, CADE.
[8] J. Saxe,et al. Extended static checking for Java , 2002, PLDI '02.
[9] Sriram K. Rajamani,et al. The SLAM project: debugging system software via static analysis , 2002, POPL '02.
[10] L. D. Moura. Lemmas on Demand for Satisfiability Solvers , 2002 .
[11] David L. Dill,et al. Checking Satisfiability of First-Order Formulas by Incremental Translation to SAT , 2002, CAV.
[12] Piergiorgio Bertoli,et al. A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions , 2002, CADE.
[13] Xinming Ou,et al. Theorem Proving Using Lazy Proof Explication , 2003, CAV.
[14] Thomas A. Henzinger,et al. Software Verification with BLAST , 2003, SPIN.
[15] K. Rustan M. Leino,et al. The Spec# Programming System: An Overview , 2004, CASSIS.
[16] Silvio Ghilardi,et al. A Comprehensive Framework for Combined Decision Procedures , 2005, FroCoS.
[17] David Detlefs,et al. Simplify: a theorem prover for program checking , 2005, JACM.
[18] Marco Bozzano,et al. Efficient Satisfiability Modulo Theories via Delayed Theory Combination , 2005, CAV.
[19] Calogero G. Zarba,et al. Combining Nonstably Infinite Theories , 2005, Journal of Automated Reasoning.
[20] Aaron Stump,et al. Design and Results of the First Satisfiability Modulo Theories Competition (SMT-COMP 2005) , 2005, Journal of Automated Reasoning.
[21] Cesare Tinelli,et al. Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.
[22] Bruno Dutertre,et al. A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.
[23] Holger Hermanns,et al. Proceedings of the 19th international conference on Computer aided verification , 2007 .
[24] Roberto Bruttomesso,et al. The MathSAT 4SMT Solver , 2008, CAV.
[25] Nikolaj Bjørner,et al. Z3: An Efficient SMT Solver , 2008, TACAS.
[26] Albert Oliveras,et al. The Barcelogic SMT Solver , 2008, CAV.
[27] Alok Nandan,et al. Model-Based Quality Assurance of Windows Protocol Documentation , 2008, 2008 1st International Conference on Software Testing, Verification, and Validation.
[28] Nikolai Tillmann,et al. Automating Software Testing Using Program Analysis , 2008, IEEE Software.
[29] Sharad Malik,et al. Boolean satisfiability from theoretical hardness to practical success , 2009, Commun. ACM.
[30] Mark A. Hillebrand,et al. VCC: A Practical System for Verifying Concurrent C , 2009, TPHOLs.