Robust model predictive control of input-constrained stable systems with unstructured uncertainty

For open-loop stable systems having input constraints and unstructured model uncertainty, we present a new closed-loop stability test applicable to typical output-feedback model predictive control (MPC) policies. The new stability test is less conservative than a previous proposal, and it enables both analysis and synthesis of input-constrained MPC policies. In particular, we propose a robust output-feedback MPC design which, at each time step, minimizes a quadratic upper bound on a nominal cost function. We determine the upper bound off-line subject to the new stability test using convex optimization techniques. Simulation results show that the proposed MPC design can be much less conservative than robustly stable MPC designs based on conventional cost functions.

[1]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[2]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[3]  David J. Hill,et al.  Stability results for nonlinear feedback systems , 1977, Autom..

[4]  P. Moylan,et al.  Dissipative Dynamical Systems: Basic Input-Output and State Properties , 1980 .

[5]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[6]  Wei Lin,et al.  Losslessness, feedback equivalence, and the global stabilization of discrete-time nonlinear systems , 1994, IEEE Trans. Autom. Control..

[7]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[8]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[9]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[10]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[11]  Basil Kouvaritakis,et al.  Efficient robust predictive control , 2000, IEEE Trans. Autom. Control..

[12]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[13]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[14]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[15]  A. Wills,et al.  The inherent robustness of constrained linear model predictive control , 2005 .

[16]  A. Wills,et al.  A sufficient condition for the stability of optimizing controllers with saturating actuators , 2005 .

[17]  A. Wills,et al.  Zames-Falb multipliers for quadratic programming , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  A. Wills,et al.  THE ROBUSTNESS OF INPUT CONSTRAINED MODEL PREDICTIVE CONTROL TO INFINITY-NORM BOUND MODEL UNCERTAINTY , 2006 .

[19]  Johan A. K. Suykens,et al.  Robust triple mode MPC , 2006 .

[20]  Graham C. Goodwin,et al.  A dissipativity approach to robustness in constrained model predictive control , 2007, 2007 46th IEEE Conference on Decision and Control.

[21]  Graham C. Goodwin,et al.  Robust output-feedback model predictive control for systems with unstructured uncertainty , 2008, Autom..

[22]  Yucai Zhu,et al.  System identification for process control: recent experience and outlook , 2009, Int. J. Model. Identif. Control..