Dynamical resource theory of quantum coherence

Decoherence is all around us. Every quantum system that interacts with the environment is doomed to decohere. The preservation of quantum coherence is one of the major challenges faced in quantum technologies, but its use as a resource is very promising and can lead to various operational advantages, for example in quantum algorithms. Hence, much work has been devoted in recent years to quantify the coherence present in a system. In the present paper, we formulate the quantum resource theory of dynamical coherence. The underlying physical principle we follow is that the free dynamical objects are those that cannot preserve or distribute coherence. This leads us to identify classical channels as the free elements in this theory. Consequently, even the quantum identity channel is not free as all physical systems undergo decoherence and hence, the preservation of coherence should be considered a resource. In our work, we introduce four different types of free superchannels (analogous to MIO, DIO, IO, and SIO) and discuss in detail two of them, namely, dephasing-covariant incoherent superchannels (DISC), maximally incoherent superchannels (MISC). The latter consists of all superchannels that do not generate non-classical channels from classical ones. We quantify dynamical coherence using channel-divergence-based monotones for MISC and DISC. We show that some of these monotones have operational interpretations as the exact, the approximate, and the liberal coherence cost of a quantum channel. Moreover, we prove that the liberal asymptotic cost of a channel is equal to a new type of regularized relative entropy. Finally, we show that the conversion distance between two channels under MISC and DISC can be computed using a semi-definite program (SDP).

[1]  Giulio Chiribella,et al.  Optimal quantum operations at zero energy cost , 2017 .

[2]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[3]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[4]  Eric Chitambar,et al.  Erratum: Comparison of incoherent operations and measures of coherence [Phys. Rev. A 94 , 052336 (2016)] , 2017 .

[5]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[6]  B. Valiron,et al.  Quantum computations without definite causal structure , 2009, 0912.0195.

[7]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[8]  Xin Wang,et al.  Using and reusing coherence to realize quantum processes , 2018, Quantum.

[9]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[10]  Michel X. Goemans,et al.  Proceedings of the thirty-fifth annual ACM symposium on Theory of computing , 2003, STOC 2003.

[11]  K. Audenaert,et al.  α-z-Rényi relative entropies , 2015 .

[12]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[13]  R. Spekkens,et al.  Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.

[14]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[15]  Martin B. Plenio,et al.  Quantifying Operations with an Application to Coherence. , 2018, Physical review letters.

[16]  Nilanjana Datta,et al.  Max- Relative Entropy of Entanglement, alias Log Robustness , 2008, 0807.2536.

[17]  G. D’Ariano,et al.  Theoretical framework for quantum networks , 2009, 0904.4483.

[18]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[19]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[20]  Alexander Streltsov,et al.  Genuine quantum coherence , 2015, 1511.08346.

[21]  Gilad Gour,et al.  Comparison of Quantum Channels by Superchannels , 2018, IEEE Transactions on Information Theory.

[22]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[23]  Gilad Gour,et al.  Necessary and sufficient conditions on measurements of quantum channels , 2019, Proceedings of the Royal Society A.

[24]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[25]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[26]  W. Zurek Decoherence and the Transition from Quantum to Classical—Revisited , 2003, quant-ph/0306072.

[27]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[28]  N. Datta,et al.  A limit of the quantum Rényi divergence , 2013, 1308.5961.

[29]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[30]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[31]  Paolo Perinotti,et al.  Theoretical framework for higher-order quantum theory , 2019, Proceedings of the Royal Society A.

[32]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[33]  Robert W. Spekkens,et al.  A mathematical theory of resources , 2014, Inf. Comput..

[34]  Eneet Kaur,et al.  Amortized entanglement of a quantum channel and approximately teleportation-simulable channels , 2017, ArXiv.

[35]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[36]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[37]  G. Adesso,et al.  One-Shot Coherence Distillation. , 2017, Physical review letters.

[38]  Nilanjana Datta,et al.  One-Shot Rates for Entanglement Manipulation Under Non-entangling Maps , 2009, IEEE Transactions on Information Theory.

[39]  Mark M. Wilde,et al.  Optimized quantum f-divergences and data processing , 2017, Journal of Physics A: Mathematical and Theoretical.

[40]  G. D’Ariano,et al.  Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.

[41]  A. Winter,et al.  Resource theory of coherence: Beyond states , 2017, 1704.03710.

[42]  Paolo Perinotti,et al.  Causal Structures and the Classification of Higher Order Quantum Computations , 2016, 1612.05099.

[43]  Gilad Gour,et al.  How to Quantify a Dynamical Quantum Resource. , 2019, Physical review letters.

[44]  K. Audenaert,et al.  alpha-z-relative Renyi entropies , 2013, 1310.7178.

[45]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[46]  Yeong-Cherng Liang,et al.  A resource theory of quantum memories and their faithful verification with minimal assumptions , 2017, 1710.04710.

[47]  Paolo Zanardi,et al.  Measures of coherence-generating power for quantum unital operations , 2017 .

[48]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.

[49]  Vahid Karimipour,et al.  Cohering and decohering power of quantum channels , 2015, 1506.02304.

[50]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[51]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[52]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[53]  Seth Lloyd,et al.  Resource Destroying Maps. , 2016, Physical review letters.

[54]  E. Chitambar,et al.  Comparing coherence and entanglement under resource non-generating unitary transformations , 2018, Journal of Physics A: Mathematical and Theoretical.

[55]  S. Fei,et al.  Maximum Relative Entropy of Coherence: An Operational Coherence Measure. , 2017, Physical review letters.

[56]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[57]  Kaifeng Bu,et al.  Quantifying the resource content of quantum channels: An operational approach , 2018, Physical Review A.

[58]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.

[59]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[60]  N. Datta,et al.  Approaches for approximate additivity of the Holevo information of quantum channels , 2017, Physical Review A.

[61]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[62]  Xiao-Dong Yu,et al.  Certifying quantum memories with coherence , 2018, Physical Review A.

[63]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[64]  R. T. Beyer,et al.  Reports on Progress in Physics , 1959 .

[65]  F. Hiai,et al.  Quantum f-divergences and error correction , 2010, 1008.2529.

[66]  G. Gour,et al.  Comparison of incoherent operations and measures of coherence , 2016 .

[67]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[68]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[69]  Mark M. Wilde,et al.  Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication , 2014, Communications in Mathematical Physics.

[70]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[71]  Eric Chitambar,et al.  Relating the Resource Theories of Entanglement and Quantum Coherence. , 2015, Physical review letters.

[72]  R. Radner PROCEEDINGS of the FOURTH BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY , 2005 .

[73]  Omar Fawzi,et al.  A chain rule for the quantum relative entropy , 2020, Physical review letters.

[74]  Gerardo Adesso,et al.  Frozen quantum coherence. , 2014, Physical review letters.

[75]  Berkeley,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[76]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[77]  William IEEE TRANSACTIONS ON INFORMATION THEORY VOL XX NO Y MONTH Signal Propagation and Noisy Circuits , 2019 .

[78]  Xiao Yuan,et al.  One-Shot Coherence Distillation: Towards Completing the Picture , 2018, IEEE Transactions on Information Theory.

[79]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[80]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[81]  Fumio Hiai,et al.  Different quantum f-divergences and the reversibility of quantum operations , 2016, 1604.03089.

[82]  Mario Berta,et al.  Thermodynamic Capacity of Quantum Processes. , 2018, Physical review letters.

[83]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[84]  Chung-Yun Hsieh Resource Preservability. , 2019 .

[85]  Yunchao Liu,et al.  Operational resource theory of quantum channels , 2019, Physical Review Research.