Region-DH: Region-based Deep Hashing for Multi-Instance Aware Image Retrieval

This paper introduces an instance-aware hashing approach Region-DH for large-scale multi-label image retrieval. The accurate object bounds can significantly increase the hashing performance of instance features. We design a unified deep neural network that simultaneously localizes and recognizes objects while learning the hash functions for binary codes. Region-DH focuses on recognizing objects and building compact binary codes that represent more foreground patterns. Region-DH can flexibly be used with existing deep neural networks or more complex object detectors for image hashing. Extensive experiments are performed on benchmark datasets and show the efficacy and robustness of the proposed Region-DH model.

[1]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[2]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  R. Choras Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems , 2008 .

[4]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[5]  Wei Liu,et al.  Hashing with Graphs , 2011, ICML.

[6]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[7]  Geoffrey E. Hinton,et al.  Semantic hashing , 2009, Int. J. Approx. Reason..

[8]  Rongrong Ji,et al.  Supervised hashing with kernels , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Chu-Song Chen,et al.  Supervised Learning of Semantics-Preserving Hash via Deep Convolutional Neural Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[11]  Jashanbir Singh Kaleka,et al.  Different Approaches of CBIR Techniques , 2013 .

[12]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[13]  Zheng Lin,et al.  Deep Supervised Hashing for Multi-Label and Large-Scale Image Retrieval , 2017, ICMR.

[14]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[15]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Guosheng Lin,et al.  Learning Hash Functions Using Column Generation , 2013, ICML.

[17]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Kristen Grauman,et al.  Kernelized Locality-Sensitive Hashing , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Hanjiang Lai,et al.  Instance-Aware Hashing for Multi-Label Image Retrieval , 2016, IEEE Transactions on Image Processing.

[21]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[22]  Jen-Hao Hsiao,et al.  Deep learning of binary hash codes for fast image retrieval , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[23]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Antonio Torralba,et al.  Spectral Hashing , 2008, NIPS.

[25]  Qingquan Li,et al.  Instance Similarity Deep Hashing for Multi-Label Image Retrieval , 2018, ArXiv.

[26]  Trevor Darrell,et al.  Learning to Hash with Binary Reconstructive Embeddings , 2009, NIPS.

[27]  David J. Fleet,et al.  Minimal Loss Hashing for Compact Binary Codes , 2011, ICML.