Relating different quantum generalizations of the conditional Rényi entropy

Recently a new quantum generalization of the Renyi divergence and the corresponding conditional Renyi entropies was proposed. Here, we report on a surprising relation between conditional Renyi entropies based on this new generalization and conditional Renyi entropies based on the quantum relative Renyi entropy that was used in previous literature. Our result generalizes the well-known duality relation H(A|B) + H(A|C) = 0 of the conditional von Neumann entropy for tripartite pure states to Renyi entropies of two different kinds. As a direct application, we prove a collection of inequalities that relate different conditional Renyi entropies and derive a new entropic uncertainty relation.

[1]  K. Audenaert On the Araki-Lieb-Thirring inequality , 2007, math/0701129.

[2]  Patrick J. Coles,et al.  Entanglement-assisted guessing of complementary measurement outcomes , 2014 .

[3]  H. Nagaoka The Converse Part of The Theorem for Quantum Hoeffding Bound , 2006, quant-ph/0611289.

[4]  Milán Mosonyi Renyi divergences and the classical capacity of finite compound channels , 2013, ArXiv.

[5]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[6]  Junji Shikata,et al.  Information Theoretic Security for Encryption Based on Conditional Rényi Entropies , 2013, ICITS.

[7]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[8]  H. Araki On an inequality of Lieb and Thirring , 1990 .

[9]  Imre Csiszár Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.

[10]  Milán Mosonyi,et al.  Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies , 2013, ArXiv.

[11]  Masahito Hayashi,et al.  Tight Exponential Analysis of Universally Composable Privacy Amplification and Its Applications , 2010, IEEE Transactions on Information Theory.

[12]  E. Knill,et al.  Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[15]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[16]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[17]  Salman Beigi,et al.  Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.

[18]  Masahito Hayashi,et al.  On error exponents in quantum hypothesis testing , 2004, IEEE Transactions on Information Theory.

[19]  M. Berta Single-shot Quantum State Merging , 2009, 0912.4495.

[20]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[21]  Masahito Hayashi,et al.  Large Deviation Analysis for Quantum Security via Smoothing of Rényi Entropy of Order 2 , 2012, IEEE Transactions on Information Theory.

[22]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[23]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[24]  Masahito Hayashi Security analysis of epsilon-almost dual universal2 hash functions , 2013, ArXiv.

[25]  Naresh Sharma,et al.  Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.

[26]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[27]  Patrick J. Coles,et al.  Uncertainty relations from simple entropic properties. , 2011, Physical review letters.

[28]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[29]  Mark M. Wilde,et al.  Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.

[30]  Hideki Yagi,et al.  Finite blocklength bounds for multiple access channels with correlated sources , 2012, 2012 International Symposium on Information Theory and its Applications.

[31]  Milán Mosonyi,et al.  On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.

[32]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[33]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[34]  Mario Berta,et al.  An equality between entanglement and uncertainty , 2013, 1302.5902.

[35]  N. Datta,et al.  A limit of the quantum Rényi divergence , 2013, 1308.5961.