Gamma-Rhythmic Gain Modulation

Cognition requires the dynamic modulation of effective connectivity, i.e., the modulation of the postsynaptic neuronal response to a given input. If postsynaptic neurons are rhythmically active, this might entail rhythmic gain modulation, such that inputs synchronized to phases of high gain benefit from enhanced effective connectivity. We show that visually induced gamma-band activity in awake macaque area V4 rhythmically modulates responses to unpredictable stimulus events. This modulation exceeded a simple additive superposition of a constant response onto ongoing gamma-rhythmic firing, demonstrating the modulation of multiplicative gain. Gamma phases leading to strongest neuronal responses also led to shortest behavioral reaction times, suggesting functional relevance of the effect. Furthermore, we find that constant optogenetic stimulation of anesthetized cat area 21a produces gamma-band activity entailing a similar gain modulation. As the gamma rhythm in area 21a did not spread backward to area 17, this suggests that postsynaptic gamma is sufficient for gain modulation.

[1]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[2]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[3]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[4]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[5]  R. Desimone,et al.  A backward progression of attentional effects in the ventral stream , 2009, Proceedings of the National Academy of Sciences.

[6]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[7]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[8]  Jing Wang,et al.  Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex. , 2015, Journal of neurophysiology.

[9]  D. McCormick,et al.  Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex , 2015, The Journal of Neuroscience.

[10]  Martin Vinck,et al.  Improved measures of phase-coupling between spikes and the Local Field Potential , 2011, Journal of Computational Neuroscience.

[11]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[12]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[13]  Martin Vinck,et al.  Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4 , 2013, Neuron.

[14]  Hualou Liang,et al.  Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention , 2005, Biological Cybernetics.

[15]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[16]  Martin Vinck,et al.  The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization , 2010, NeuroImage.

[17]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[18]  A. Kohn,et al.  Coordinated Neuronal Activity Enhances Corticocortical Communication , 2015, Neuron.

[19]  P De Weerd,et al.  Areas V1 and V2 show microsaccade‐related 3–4‐Hz covariation in gamma power and frequency , 2016, The European journal of neuroscience.

[20]  Pascal Fries,et al.  Rhythmic neuronal synchronization in visual cortex entails spatial phase relation diversity that is modulated by stimulation and attention , 2013, NeuroImage.

[21]  Pascal Fries,et al.  A Microsaccadic Rhythm Modulates Gamma-Band Synchronization and Behavior , 2009, The Journal of Neuroscience.

[22]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[23]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[24]  A. Kohn,et al.  Gamma and the Coordination of Spiking Activity in Early Visual Cortex , 2013, Neuron.

[25]  R. Desimone,et al.  Stimulus repetition modulates gamma-band synchronization in primate visual cortex , 2014, Proceedings of the National Academy of Sciences.

[26]  Matteo Carandini,et al.  Millisecond Coupling of Local Field Potentials to Synaptic Currents in the Awake Visual Cortex , 2016, Neuron.

[27]  J. Maunsell,et al.  Do gamma oscillations play a role in cerebral cortex? , 2015, Trends in Cognitive Sciences.

[28]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[29]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[30]  P. Fries,et al.  Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching , 2013, Neuron.

[31]  Bernhard Schölkopf,et al.  Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer , 2015, PLoS biology.

[32]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[33]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[34]  Pascal Fries,et al.  Communication through coherence with inter-areal delays , 2015, Current Opinion in Neurobiology.

[35]  D. Kullmann,et al.  Oscillatory dynamics in the hippocampus support dentate gyrus–CA3 coupling , 2012, Nature Neuroscience.

[36]  B R Payne,et al.  Evidence for visual cortical area homologs in cat and macaque monkey. , 1993, Cerebral cortex.

[37]  Benjamin I. Rapoport,et al.  Real-Time Brain Oscillation Detection and Phase-Locked Stimulation Using Autoregressive Spectral Estimation and Time-Series Forward Prediction , 2013, IEEE Transactions on Biomedical Engineering.

[38]  M. Scanziani,et al.  Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with Inhibition , 2009, Neuron.

[39]  Sunita Mandon,et al.  Switching Neuronal Inputs by Differential Modulations of Gamma-Band Phase-Coherence , 2012, The Journal of Neuroscience.

[40]  Nancy Kopell,et al.  Gamma Oscillations and Stimulus Selection , 2008, Neural Computation.

[41]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[42]  Sebastiaan Overeem,et al.  Corticospinal Beta-Band Synchronization Entails Rhythmic Gain Modulation , 2010, The Journal of Neuroscience.

[43]  Gustavo Deco,et al.  Optimal Information Transfer in the Cortex through Synchronization , 2010, PLoS Comput. Biol..

[44]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[45]  W. Singer,et al.  Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential , 1998, Neuroscience.

[46]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[47]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[48]  Dominique L. Pritchett,et al.  Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli , 2014, Nature Neuroscience.

[49]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[50]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[51]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.