Theory and practice of optimal mutation rate control in hamming spaces of DNA sequences

We investigate the problem of optimal control of mutation by asexual self-replicating organisms represented by points in a metric space. We introduce the notion of a relatively monotonic fitness landscape and consider a generalisation of Fisher’s geometric model of adaptation for such spaces. Using a Hamming space as a prime example, we derive the probability of adaptation as a function of reproduction parameters (e.g. mutation size or rate). Optimal control rules for the parameters are derived explicitly for some relatively monotonic landscapes, and then a general information-based heuristic is introduced. We then evaluate our theoretical control functions against optimal mutation functions evolved from a random population of functions using a meta genetic algorithm. Our experimental results show a close match between theory and experiment. We demonstrate this result both in artificial fitness landscapes, defined by a Hamming distance, and a natural landscape, where fitness is defined by a DNA-protein affinity. We discuss how a control of mutation rate could occur and evolve in natural organisms. We also outline future directions of this work.

[1]  Manfred Eigen,et al.  The error threshold. , 2005, Virus research.

[2]  Joshua D. Knowles,et al.  Analysis of a complete DNA–protein affinity landscape , 2010, Journal of The Royal Society Interface.

[3]  Ivanoe De Falco,et al.  Mutation-based genetic algorithm: performance evaluation , 2002, Appl. Soft Comput..

[4]  Peter C. Nelson,et al.  Optimizing genetic operator rates using a markov chain model of genetic algorithms , 2010, GECCO '10.

[5]  Michael D. Vose,et al.  Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.

[6]  A. Sancar,et al.  DNA Damage: Repair , 2008 .

[7]  Andrew W. Murray,et al.  Estimating the Per-Base-Pair Mutation Rate in the Yeast Saccharomyces cerevisiae , 2008, Genetics.

[8]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[9]  S. Manrubia,et al.  Variable Mutation Rates as an Adaptive Strategy in Replicator Populations , 2010, PloS one.

[10]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[11]  J. Drake,et al.  Rates of spontaneous mutation. , 1998, Genetics.

[12]  D. Kell,et al.  Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape , 2008, Nucleic acids research.

[13]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[14]  Masayuki Yanagiya,et al.  A Simple Mutation-Dependent Genetic Algorithm , 1993, ICGA.

[15]  M. Pigliucci Is evolvability evolvable? , 2008, Nature Reviews Genetics.

[16]  Gabriela Ochoa,et al.  Setting The Mutation Rate: Scope And Limitations Of The 1/L Heuristic , 2002, GECCO.

[17]  Christoph Adami,et al.  Viral evolution under the pressure of an adaptive immune system: Optimal mutation rates for viral escape , 2002, Complex..

[18]  Meredith V. Trotter,et al.  Robustness and evolvability. , 2010, Trends in genetics : TIG.

[19]  Jeffrey E. Barrick,et al.  Second-Order Selection for Evolvability in a Large Escherichia coli Population , 2011, Science.

[20]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[21]  David H. Ackley,et al.  An empirical study of bit vector function optimization , 1987 .

[22]  D. J. Kiviet,et al.  Empirical fitness landscapes reveal accessible evolutionary paths , 2007, Nature.

[23]  Inman Harvey,et al.  Error Thresholds and Their Relation to Optimal Mutation Rates , 2022 .

[24]  C. Waddington,et al.  The strategy of the genes , 1957 .

[25]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.

[26]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[27]  Roman V. Belavkin,et al.  On evolution of an information dynamic system and its generating operator , 2012, Optim. Lett..

[28]  F. Taddei,et al.  Highly variable mutation rates in commensal and pathogenic Escherichia coli. , 1997, Science.

[29]  J. Keck,et al.  Rising from the Ashes: DNA Repair in Deinococcus radiodurans , 2010, PLoS genetics.

[30]  Christopher R. Stephens,et al.  "Optimal" mutation rates for genetic search , 2006, GECCO.

[31]  R. Hakem,et al.  DNA‐damage repair; the good, the bad, and the ugly , 2008, The EMBO journal.

[32]  H. A. Orr,et al.  The genetic theory of adaptation: a brief history , 2005, Nature Reviews Genetics.

[33]  Valeria Souza,et al.  Stress-Induced Mutagenesis in Bacteria , 2003, Science.

[34]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[35]  L. Meyers,et al.  How Mutational Networks Shape Evolution: Lessons from RNA Models , 2007 .

[36]  Charles Ofria,et al.  Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes , 2008, ECAL.

[37]  R. Lenski,et al.  Diminishing returns from mutation supply rate in asexual populations. , 1999, Science.

[38]  R. Belavkin Information trajectory of optimal learning. , 2010 .