A Comparison of Random Forest Methods for Solving the Problem of Pulsar Search

[1]  Lawrence Mitchell,et al.  A parallel random forest classifier for R , 2011, ECMLS '11.

[2]  Kenli Li,et al.  A Parallel Random Forest Algorithm for Big Data in a Spark Cloud Computing Environment , 2017, IEEE Transactions on Parallel and Distributed Systems.

[3]  Sven F. Crone,et al.  Optimizing Hyperparameters of Support Vector Machines by Genetic Algorithms , 2005, IC-AI.

[4]  Qing Zeng-Treitler,et al.  On Sample Size and Classification Accuracy: A Performance Comparison , 2005, ISBMDA.

[5]  Meng Cai,et al.  Prediction and feature analysis of intron retention events in plant genome , 2017, Comput. Biol. Chem..

[6]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[7]  Sahil Shah,et al.  Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques , 2015, Expert Syst. Appl..

[8]  Malka N. Halgamuge,et al.  Impact of Different Data Types on Classifier Performance of Random Forest, Naïve Bayes, and K-Nearest Neighbors Algorithms , 2017 .

[9]  Abdallah Abarda,et al.  Using Ensemble Methods to Solve the Problem of Pulsar Search , 2019, Big Data and Networks Technologies.

[10]  Jin Zhang,et al.  An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping , 2016 .

[11]  A Divided Latent Class analysis for Big Data , 2017, FNC/MobiSPC.

[12]  Nicolas Jouandeau,et al.  Using parallel random forest classifier in predicting land suitability for crop production , 2017 .

[13]  Achim Zeileis,et al.  Bias in random forest variable importance measures: Illustrations, sources and a solution , 2007, BMC Bioinformatics.

[14]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[15]  Li Xiu,et al.  Application of data mining techniques in customer relationship management: A literature review and classification , 2009, Expert Syst. Appl..

[16]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[17]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[18]  A. Chilingarian,et al.  Implementation of the Random Forest method for the Imaging Atmospheric Cherenkov Telescope MAGIC , 2007, 0709.3719.

[19]  P. Venkateswara Rao,et al.  Comparison of machine learning algorithms for classification of Penaeid prawn species , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[20]  Eric Bauer,et al.  An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.

[21]  E. Alzate Modelos de mezclas Bernoulli con regresión logística: una aplicación en la valoración de carteras de crédito , 2020 .

[22]  Pierre Baldi,et al.  Assessing the accuracy of prediction algorithms for classification: an overview , 2000, Bioinform..

[23]  Mohamed Abdel-Aty,et al.  Using conditional inference forests to identify the factors affecting crash severity on arterial corridors. , 2009, Journal of safety research.

[24]  A Min Tjoa,et al.  Performance Comparison between Naïve Bayes, Decision Tree and k-Nearest Neighbor in Searching Alternative Design in an Energy Simulation Tool , 2013 .

[25]  Shane McIntosh,et al.  Automated Parameter Optimization of Classification Techniques for Defect Prediction Models , 2016, 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).

[26]  Abdallah Abarda,et al.  Solving the problem of latent class selection , 2018, LOPAL '18.

[27]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[28]  Ahmad Basheer Hassanat,et al.  Solving the Problem of the K Parameter in the KNN Classifier Using an Ensemble Learning Approach , 2014, ArXiv.

[29]  F. Michel Theory of pulsar magnetospheres , 1982 .

[30]  Sotiris B. Kotsiantis,et al.  Machine learning: a review of classification and combining techniques , 2006, Artificial Intelligence Review.

[31]  Tahani Daghistani,et al.  Diagnosis of Diabetes by Applying Data Mining Classification Techniques , 2016 .

[32]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[33]  A. Shameem Fathima,et al.  Analysis of Significant Factors for Dengue Infection Prognosis Using the Random Forest Classifier , 2015 .

[34]  Andreas Ziegler,et al.  ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R , 2015, 1508.04409.

[35]  Dian Anggraini,et al.  Comparison of accuracy level K-Nearest Neighbor algorithm and Support Vector Machine algorithm in classification water quality status , 2016, 2016 6th International Conference on System Engineering and Technology (ICSET).

[36]  Cardona Alzate,et al.  Predicción y selección de variables con bosques aleatorios en presencia de variables correlacionadas , 2020 .