Distributed and retinotopically asymmetric processing of coherent motion in mouse visual cortex

Perception of visual motion is important for a range of ethological behaviors in mammals. In primates, specific higher visual cortical regions are specialized for processing of coherent visual motion. However, the distribution of motion processing among visual cortical areas in mice is unclear, despite the powerful genetic tools available for measuring population neural activity. Here, we used widefield and 2-photon calcium imaging of transgenic mice expressing a calcium indicator in excitatory neurons to measure mesoscale and cellular responses to coherent motion across the visual cortex. Imaging of primary visual cortex (V1) and several higher visual areas (HVAs) during presentation of natural movies and random dot kinematograms (RDKs) revealed heterogeneous responses to coherent motion. Although coherent motion responses were observed throughout visual cortex, particular HVAs in the putative dorsal stream (PM, AL, AM) exhibited stronger responses than ventral stream areas (LM and LI). Moreover, beyond the differences between visual areas, there was considerable heterogeneity within each visual area. Individual visual areas exhibited an asymmetry across the vertical retinotopic axis (visual elevation), such that neurons representing the inferior visual field exhibited greater responses to coherent motion. These results indicate that processing of visual motion in mouse cortex is distributed unevenly across visual areas and exhibits a spatial bias within areas, potentially to support processing of optic flow during spatial navigation.

[1]  B R Payne,et al.  Evidence for visual cortical area homologs in cat and macaque monkey. , 1993, Cerebral cortex.

[2]  Tobias Bonhoeffer,et al.  Area-Specific Mapping of Binocular Disparity across Mouse Visual Cortex , 2019, Current Biology.

[3]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[4]  C. Niell,et al.  What can mice tell us about how vision works? , 2011, Trends in Neurosciences.

[5]  Michael W. Levine,et al.  The relative capabilities of the upper and lower visual hemifields , 2005, Vision Research.

[6]  Hongtu Zhu,et al.  Stream-dependent development of higher visual cortical areas , 2016, Nature Neuroscience.

[7]  Michael P. Stryker,et al.  New Paradigm for Optical Imaging Temporally Encoded Maps of Intrinsic Signal , 2003, Neuron.

[8]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[9]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[10]  Marina Fridman,et al.  A Role for Mouse Primary Visual Cortex in Motion Perception , 2018, Current Biology.

[11]  Nathan C. Klapoetke,et al.  Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance , 2015, Neuron.

[12]  K. H. Britten,et al.  Neuronal mechanisms of motion perception. , 1990, Cold Spring Harbor symposia on quantitative biology.

[13]  Yang Li,et al.  An extended retinotopic map of mouse cortex , 2017, eLife.

[14]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[15]  Alexander S. Ecker,et al.  Population code in mouse V1 facilitates read-out of natural scenes through increased sparseness , 2014, Nature Neuroscience.

[16]  Hui Chen,et al.  Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[17]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[18]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.

[19]  Reiko Meguro,et al.  The Extrageniculate Visual Pathway Generates Distinct Response Properties in the Higher Visual Areas of Mice , 2014, Current Biology.

[20]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[21]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[22]  Rune Rasmussen,et al.  Circuit Mechanisms Governing Local vs. Global Motion Processing in Mouse Visual Cortex , 2017, Front. Neural Circuits.

[23]  B. Strowbridge,et al.  Visual landmarks facilitate rodent spatial navigation in virtual reality environments. , 2012, Learning & memory.

[24]  C. Harvey,et al.  The Spatial Structure of Neural Encoding in Mouse Posterior Cortex during Navigation , 2019, Neuron.

[25]  A. Benucci,et al.  The mouse posterior parietal cortex: anatomy and functions , 2019, Neuroscience Research.

[26]  Y C Diao,et al.  Response properties of PMLS and PLLS neurons to simulated optic flow patterns , 2000, The European journal of neuroscience.

[27]  Edward M. Callaway,et al.  A dedicated circuit linking direction selective retinal ganglion cells to primary visual cortex , 2014, Nature.

[28]  J. Sanes,et al.  The most numerous ganglion cell type of the mouse retina is a selective feature detector , 2012, Proceedings of the National Academy of Sciences.

[29]  Ganna Palagina,et al.  Complex Visual Motion Representation in Mouse Area V1 , 2017, The Journal of Neuroscience.

[30]  Tania A Seabrook,et al.  Architecture, Function, and Assembly of the Mouse Visual System. , 2017, Annual review of neuroscience.

[31]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Wenzhi Sun,et al.  Identification of ON–OFF direction‐selective ganglion cells in the mouse retina , 2005, The Journal of physiology.

[33]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[34]  Quanxin Wang,et al.  Area map of mouse visual cortex , 2007, The Journal of comparative neurology.

[35]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[36]  Ian Nauhaus,et al.  Anterior-Posterior Direction Opponency in the Superficial Mouse Lateral Geniculate Nucleus , 2012, Neuron.

[37]  K. Ohki,et al.  Color Representation Is Retinotopically Biased but Locally Intermingled in Mouse V1 , 2017, Front. Neural Circuits.

[38]  Robert Sekuler,et al.  Coherent global motion percepts from stochastic local motions , 1984, Vision Research.

[39]  Demetris K. Roumis,et al.  Functional Specialization of Mouse Higher Visual Cortical Areas , 2011, Neuron.

[40]  Denise M. Piscopo,et al.  Large-scale imaging of cortical dynamics during sensory perception and behavior. , 2016, Journal of neurophysiology.

[41]  Edward M. Callaway,et al.  Pattern and Component Motion Responses in Mouse Visual Cortical Areas , 2015, Current Biology.

[42]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[43]  A. B. Bonds,et al.  Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? , 2002, Visual Neuroscience.

[44]  Quanxin Wang,et al.  Gateways of Ventral and Dorsal Streams in Mouse Visual Cortex , 2011, The Journal of Neuroscience.

[45]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[46]  Andreas Hierlemann,et al.  Causal evidence for retina dependent and independent visual motion computations in mouse cortex , 2017, Nature Neuroscience.

[47]  Olaf Sporns,et al.  Network Analysis of Corticocortical Connections Reveals Ventral and Dorsal Processing Streams in Mouse Visual Cortex , 2012, The Journal of Neuroscience.

[48]  Rana N. El-Danaf,et al.  Sub‐topographic maps for regionally enhanced analysis of visual space in the mouse retina , 2019, The Journal of comparative neurology.

[49]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[50]  Shawn R. Olsen,et al.  Higher-Order Areas of the Mouse Visual Cortex. , 2017, Annual review of vision science.

[51]  James H. Marshel,et al.  Functional Specialization of Seven Mouse Visual Cortical Areas , 2011, Neuron.

[52]  Ian Nauhaus,et al.  Topography and Areal Organization of Mouse Visual Cortex , 2014, The Journal of Neuroscience.

[53]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[54]  Qian Wang,et al.  A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice , 2015, Science.

[55]  Morgane M. Roth,et al.  Model-based analysis of pattern motion processing in mouse primary visual cortex , 2015, Front. Neural Circuits.

[56]  M. Meister,et al.  Rapid Innate Defensive Responses of Mice to Looming Visual Stimuli , 2013, Current Biology.

[57]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[58]  Onkar S. Dhande,et al.  Molecular Fingerprinting of On–Off Direction-Selective Retinal Ganglion Cells Across Species and Relevance to Primate Visual Circuits , 2018, The Journal of Neuroscience.

[59]  Lindsey L. Glickfeld,et al.  Cortico-cortical projections in mouse visual cortex are functionally target specific , 2013, Nature Neuroscience.

[60]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[61]  T. Nef,et al.  Behavioral Differences in the Upper and Lower Visual Hemifields in Shape and Motion Perception , 2016, Front. Behav. Neurosci..

[62]  Tobias Bonhoeffer,et al.  Area-specific mapping of binocular disparity across mouse visual cortex , 2019 .

[63]  S. Treue,et al.  The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns , 2005, Experimental Brain Research.

[64]  T. Branco,et al.  A synaptic threshold mechanism for computing escape decisions , 2018, Nature.

[65]  Maria C. Dadarlat,et al.  Flow stimuli reveal ecologically appropriate responses in mouse visual cortex , 2018, Proceedings of the National Academy of Sciences.

[66]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.