The transcriptome‐wide landscape of molecular subtype‐specific mRNA expression profiles in acute myeloid leukemia

Molecular classification of acute myeloid leukemia (AML) aids prognostic stratification and clinical management. Our aim in this study is to identify transcriptome‐wide mRNAs that are specific to each of the molecular subtypes of AML. We analyzed RNA‐sequencing data of 955 AML samples from three cohorts, including the BeatAML project, the Cancer Genome Atlas, and a cohort of Swedish patients to provide a comprehensive transcriptome‐wide view of subtype‐specific mRNA expression. We identified 729 subtype‐specific mRNAs, discovered in the BeatAML project and validated in the other two cohorts. Using unique proteomics data, we also validated the presence of subtype‐specific mRNAs at the protein level, yielding a rich collection of potential protein‐based biomarkers for the AML community. To enable the exploration of subtype‐specific mRNA expression by the broader scientific community, we provide an interactive resource to the public.

[1]  Krishna R. Kalari,et al.  Alternating EM algorithm for a bilinear model in isoform quantification from RNA-seq data , 2019, Bioinform..

[2]  G. Mills,et al.  Breast cancer quantitative proteome and proteogenomic landscape , 2019, Nature Communications.

[3]  Enis Afgan,et al.  Cloud bursting galaxy: federated identity and access management , 2018, bioRxiv.

[4]  Salam A. Assi,et al.  Subtype-specific regulatory network rewiring in acute myeloid leukemia , 2018, Nature Genetics.

[5]  Beth Wilmot,et al.  Functional Genomic Landscape of Acute Myeloid Leukemia , 2018, Nature.

[6]  Christopher S. Hughes,et al.  Extending the Compatibility of the SP3 Paramagnetic Bead Processing Approach for Proteomics. , 2018, Journal of proteome research.

[7]  M. Huss,et al.  Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow , 2018, Nature Communications.

[8]  Paolo Di Tommaso,et al.  Nextflow enables reproducible computational workflows , 2017, Nature Biotechnology.

[9]  J Lindberg,et al.  Validation of risk stratification models in acute myeloid leukemia using sequencing-based molecular profiling , 2017, Leukemia.

[10]  Y. Pawitan,et al.  Comprehensive landscape of subtype-specific coding and non-coding RNA transcripts in breast cancer , 2016, Oncotarget.

[11]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[12]  L. Stein,et al.  The Reactome pathway Knowledgebase , 2015, Nucleic Acids Res..

[13]  D. Lio,et al.  Are Endothelial Progenitor Cells the Real Solution for Cardiovascular Diseases? Focus on Controversies and Perspectives , 2015, BioMed research international.

[14]  Y. Pawitan,et al.  Identifying and Assessing Interesting Subgroups in a Heterogeneous Population , 2015, BioMed research international.

[15]  A. Cheung,et al.  PTPRG suppresses tumor growth and invasion via inhibition of Akt signaling in nasopharyngeal carcinoma , 2015, Oncotarget.

[16]  Y. Hayashi,et al.  EVI1 overexpression is a poor prognostic factor in pediatric patients with mixed lineage leukemia-AF9 rearranged acute myeloid leukemia , 2014, Haematologica.

[17]  A. Chokkalingam,et al.  PTPRG inhibition by DNA methylation and cooperation with RAS gene activation in childhood acute lymphoblastic leukemia , 2014, International journal of cancer.

[18]  M. Huss,et al.  HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics , 2013, Nature Methods.

[19]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[20]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[21]  M. Kurokawa,et al.  A role for RUNX1 in hematopoiesis and myeloid leukemia , 2013, International Journal of Hematology.

[22]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[23]  S. Scholl,et al.  Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression , 2012, Cell Communication and Signaling.

[24]  N. Socci,et al.  Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. , 2012, The New England journal of medicine.

[25]  F. Zipp,et al.  Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity , 2012, Cell Communication and Signaling.

[26]  R. Hills,et al.  Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. , 2010, Blood.

[27]  C. Bloomfield,et al.  The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. , 2009, Blood.

[28]  Rakesh Nagarajan,et al.  High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. , 2009, The Journal of clinical investigation.

[29]  T. Ley,et al.  The Expression Signature of M3 AML Suggests Direct and Indirect Effects of PML-RARA on Target Genes. , 2007 .

[30]  Misao Ohki,et al.  Identification of a gene expression signature associated with pediatric AML prognosis. , 2003, Blood.

[31]  T. Fujita,et al.  Core-binding factor β interacts with Runx2 and is required for skeletal development , 2002, Nature Genetics.

[32]  G. Stein,et al.  Cbfβ interacts with Runx2 and has a critical role in bone development , 2002, Nature Genetics.

[33]  S. Mundlos,et al.  Mutations in the RUNX2 gene in patients with cleidocranial dysplasia , 2002, Human mutation.

[34]  H. Gralnick,et al.  Proposals for the Classification of the Acute Leukaemias French‐American‐British (FAB) Co‐operative Group , 1976, British journal of haematology.

[35]  T. Haferlach,et al.  Subtype-specific patterns of molecular mutations in acute myeloid leukemia , 2017, Leukemia.

[36]  James R. Cook,et al.  Chapter 25 – Molecular Hematopathology , 2009 .

[37]  M. Stoler,et al.  Cell and tissue based molecular pathology , 2009 .

[38]  Claude-Alain H. Roten,et al.  Theoretical and practical advances in genome halving , 2004 .