Dorsoventral asymmetry in the visual field of the bee,Apis mellifica

Summary1.Bees can be trained to a special orientation αtr of a black-and-white disk (one half black, the other half white; angular diameter 130 °), offered on a vertical screen. Different test inclinations αt of the contrast line between the black and white area of the disk are discriminated from αtr (direction sensitivity curve, Figs. 3 and 4).2.Insertions of contrasting sectors into the black and white area of the training pattern diminish the reaction frequency to that pattern (W- and B-functions, Figs. 6 and 7). Therefore the direction sensitivity curve can be approximately calculated by means of the B- and W-functions, because a rotation of the black-and-white disk is accompanied by the insertion of a white sector in the previously black area and vice versa (Fig. 5).3.The effect of inserting contrasting areas in the black-and-white disk is the stronger, the more these insertions are located in the medial lower part of the visual field (Fig. 9, Tables 3 and 4).4.The results provide strong evidence for the conclusion that the different positions of the visual field are topographically represented in the central nervous system of the bee, and that the middle lower part of the frontal visual field is most decisive for pattern recognition. They do not agree with the classical theory of form perception in insects, which is based on an integration of the stimuli effects all over the visual field, irrespective of their position within the visual field.

[1]  R. Wehner Die Bedeutung der Streifenbreite für die optische Winkelmessung der Biene (Apis mellifica) , 1968, Zeitschrift für vergleichende Physiologie.

[2]  Gilbert D. McCann,et al.  Binocular interactions of motion detection fibers in the optic lobes of flies , 1971, Kybernetik.

[3]  T. Yamaguchi,et al.  Integration of visual stimuli by the crayfish central nervous system. , 1967, The Journal of experimental biology.

[4]  E. Weizsäcker Dressurversuche zum Formensehen der Bienen, insbesondere unter wechselnden Helligkeitsbedingungen , 1970, Zeitschrift für vergleichende Physiologie.

[5]  D. Snodderly,et al.  Projection of the Lateral Eye of Limulus to the Brain , 1970, Nature.

[6]  Optokinetic memory in the locust. , 1966, The Journal of experimental biology.

[7]  M. Hertz,et al.  Die Untersuchungen über den Formensinn der Honigbiene , 1935, The Science of Nature.

[8]  Gabriel Horn,et al.  Medium and Long-term Changes in the Behaviour of Visual Neurones in the Tritocerebrum of Locusts , 1968 .

[9]  R. Wehner Pattern Recognition in Bees , 1967, Nature.

[10]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[11]  G A Horridge,et al.  Optokinetic memory in the crab, Carcinus. , 1966, The Journal of experimental biology.

[12]  G. D. Mccann,et al.  Fundamental Properties of Intensity, Form, and Motion Perception in the Visual Nervous Systems of Calliphora phaenicia and Musca domestica , 1969, The Journal of general physiology.

[13]  Georg A. Mazochin-Porshnyakov Die Fähigkeit der Bienen, visuelle Reize zu generalisieren , 1969, Zeitschrift für vergleichende Physiologie.

[14]  Rüdiger Wehner,et al.  The generalization of directional visual stimuli in the honey bee, Apis mellifera , 1971 .

[15]  L. Bishop The spectral sensitivity of motion detector units recorded in the optic lobe of the honeybee , 1970, Zeitschrift für vergleichende Physiologie.

[16]  Daniel G. Keehn,et al.  Neural correlates of the optomotor response in the fly , 1967, Kybernetik.

[17]  Werner Reichardt,et al.  Optical detection and fixation of objects by fixed flying flies , 1969, Naturwissenschaften.

[18]  S. Swihart Single unit activity in the visual pathway of the butterfly Heliconius erato , 1968 .

[19]  J Palka,et al.  Discrimination between movements of eye and object by visual interneurones of crickets. , 1969, The Journal of experimental biology.

[20]  V. Vaidya Form perception in Papilio demoleus L. (Papilionidae, lepidoptera). , 1969, Behaviour.

[21]  Una F. Jacobs-Jessen Zur Orientierung der Hummeln und einiger anderer Hymenopteren , 1959, Zeitschrift für vergleichende Physiologie.

[22]  R. Jander Über die Ethometrie von Schlüsselreizen, die Theorie der telotaktischen Wahlhandlung und das Potenzprinzip der terminalen Cumulation bei Arthropoden , 1968, Zeitschrift für vergleichende Physiologie.

[23]  D. Keehn,et al.  Two Types of Neurones Sensitive to Motion in the Optic Lobe of the Fly , 1966, Nature.

[24]  T. Yamaguchi,et al.  The neuronal components of the optic nerve of the crayfish as studied by single unit analysis , 1966, The Journal of comparative neurology.

[25]  G. Rathbun The social structure and ecology of elephant-shrews , 1979 .

[26]  E. Wolf Der Einfluß von intermittierender Reizung auf die optischen Reaktionen von Insekten , 1935, Naturwissenschaften.

[27]  M. Lindauer,et al.  Zur Physiologie des Formensehens bei der Honigbiene , 1966, Zeitschrift für vergleichende Physiologie.

[28]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[29]  R. Wehner Zur Physiologie des Formensehens bei der Honigbiene , 1966, Zeitschrift für vergleichende Physiologie.

[30]  R. Koch Tagesperiodik der Aktivität und der Orientierung nach Wald und Feld von Drosophila subobscura und Drosophila obscura , 2004, Zeitschrift für vergleichende Physiologie.

[31]  George Adrian Horridge,et al.  Extracellular recordings from single neurons in the optic lobe and brain of the locust , 1965 .

[32]  C. Voss,et al.  Über das Formensehen der roten Waldameise (Formica rufa-Gruppe) , 1967, Zeitschrift für vergleichende Physiologie.

[33]  Walter Kaiser,et al.  Directionally selective motion detecting units in the optic lobe of the honeybee , 1970, Zeitschrift für vergleichende Physiologie.

[34]  E. Wolf,et al.  THE EFFECT OF LIGHT INTENSITY, AREA, AND FLICKER FREQUENCY ON THE VISUAL REACTIONS OF THE HONEY BEE , 1935, The Journal of general physiology.

[35]  C. R. Michael Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. II: directionally selective units. , 1968, Journal of neurophysiology.

[36]  A. R. Woodcock,et al.  Spectral responses of sustaining fibers in the optic tracts of crayfish (Procambarus) , 1970, Zeitschrift für vergleichende Physiologie.

[37]  K. Mimura Movement discrimination by the visual system of flies , 1971, Zeitschrift für vergleichende Physiologie.

[38]  T. Collett,et al.  Binocular, Directionally Selective Neurones, Possibly Involved in the Optomotor Response of Insects , 1966, Nature.

[39]  B. Hassenstein,et al.  Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern , 1957, Zeitschrift für vergleichende Physiologie.

[40]  G. D. Mccann,et al.  Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. , 1968, Journal of neurophysiology.

[41]  G. Fravi Prazipitierende leber-autoantikorper bei der maus. , 1968 .

[42]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[43]  M. Lindauer,et al.  Ein Schweresinnesorgan der Honigbiene , 1959, Zeitschrift für vergleichende Physiologie.

[44]  G. K. Wallace Some Experiments on Form Perception in the Nymphs of the Desert Locust, Schistocerca Gregaria Forskål , 1958 .

[45]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[46]  Gertrud Zerrahn,et al.  Formdressur und Formunterscheidung bei der Honigbiene , 2004, Zeitschrift für vergleichende Physiologie.

[47]  Der Einfluß der Größe bewegter Felder auf den optokinetischen Augenstielnystagmus der Winkerkrabbe , 1963 .

[48]  Bernhard Schnetter Visuelle Formunterscheidung der Honigbiene im Bereich von Vier- und Sechsstrahlsternen , 1968, Zeitschrift für vergleichende Physiologie.

[49]  Ernst Wolf,et al.  Das Verhalten der Bienen gegenüber flimmernden Feldern und bewegten Objekten , 2004, Zeitschrift für vergleichende Physiologie.

[50]  T. Collett Centripetal and centrifugal visual cells in medulla of the insect optic lobe. , 1970, Journal of neurophysiology.

[51]  Thomas Collett,et al.  Connections between wide-field monocular and binocular movement detectors in the brain of a hawk moth , 1971, Zeitschrift für vergleichende Physiologie.

[52]  Integration and Analysis of Movement Information by the Visual System of Flies , 1970, Nature.