Comprehensive study of conductivity in the series of monoclinic oxymolybdates: Ln2MoO6 (Ln = Sm, Gd, Dy)

[1]  I. Animitsa,et al.  Preparation, electrical and thermal properties of new anode material based on Ca-doped perovskite CeAlO3 , 2023, International Journal of Hydrogen Energy.

[2]  N. A. Kabanova,et al.  Prospective oxygen-ion conductors Ln X O : Geometry and energy calculations , 2023, Solid State Ionics.

[3]  Chao Wang,et al.  Multifactor theoretical study on ionic transport numbers of mixed oxygen ionic-electronic conducting oxides determined by the electromotive force method , 2023, Journal of Power Sources.

[4]  N. Lyskov,et al.  Mechanism of Conductivity in the Rare Earth Layered Ln2MoO6 (Ln = La, Pr, and Nd) Oxymolybdates: Theoretical and Experimental Investigations , 2022, The Journal of Physical Chemistry C.

[5]  I. Animitsa,et al.  Oxygen ionic transport in LaInO3 and LaIn0.5Zn0.5O2.75 perovskites: Theory and experiment , 2021, Solid State Ionics.

[6]  S. Adams,et al.  Computational Search for Novel Zn-Ion Conductors—A Crystallochemical, Bond Valence, and Density Functional Study , 2021, The Journal of Physical Chemistry C.

[7]  E. Carter,et al.  Factors Governing Oxygen Vacancy Formation in Oxide Perovskites. , 2021, Journal of the American Chemical Society.

[8]  I. Animitsa,et al.  Ba2+/Ti4+- co-doped layered perovskite BаLaInO4: The structure and ionic (O2−, H+) conductivity , 2021 .

[9]  I. Animitsa,et al.  Effect of zinc doping on electrical properties of LaAlO3 perovskite , 2021 .

[10]  Lee Loong Wong,et al.  Bond Valence Pathway Analyzer—An Automatic Rapid Screening Tool for Fast Ion Conductors within softBV , 2021 .

[11]  E. Kharitonova,et al.  Structure and Physical Properties of Mg-Containing Oxymolybdates La2MoO6 , 2020, Crystallography Reports.

[12]  V. I. Bondarenko,et al.  Synthesis, structure and properties of layered Pr2MoO6-based oxymolybdates doped with Mg. , 2020, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[13]  F. Meutzner,et al.  Combined Theoretical Approach for Identifying Battery Materials: Al3+ Mobility in Oxides , 2019, Chemistry of Materials.

[14]  Stefan Adams,et al.  SoftBV - a software tool for screening the materials genome of inorganic fast ion conductors. , 2019, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[15]  E. R. Losilla,et al.  Effect of Preparation Conditions on the Polymorphism and Transport Properties of La6–xMoO12−δ (0 ≤ x ≤ 0.8) , 2017 .

[16]  A. Dudka,et al.  Polymorphism and structure of Nd2MоO6 single crystals , 2017 .

[17]  E. Kharitonova,et al.  Phase Relations and Physical Properties of Layered Pb‐Containing Nd2MoO6 Compounds , 2016 .

[18]  V. Urusov Terms of parity and distortion of coordination polyhedra in inorganic crystal chemistry , 2014, Journal of Structural Chemistry.

[19]  J. Kitchin,et al.  Effects of Concentration, Crystal Structure, Magnetism, and Electronic Structure Method on First-Principles Oxygen Vacancy Formation Energy Trends in Perovskites , 2014 .

[20]  A. P. Shevchenko,et al.  Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .

[21]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[22]  P. Colomban,et al.  Proton and Protonic Species: The Hidden Face of Solid State Chemistry. How to Measure H‐Content in Materials? , 2013 .

[23]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[24]  V. Blatov,et al.  Analysis of migration paths in fast-ion conductors with Voronoi-Dirichlet partition. , 2006, Acta crystallographica. Section B, Structural science.

[25]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[26]  V. Kharton,et al.  Ionic and electronic transport in stabilized β-La2Mo2O9 electrolytes , 2004 .

[27]  Yvon Laligant,et al.  Designing fast oxide-ion conductors based on La2Mo2O 9 , 2000, Nature.

[28]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  J. Xue,et al.  Polymorphs of Ln2MoO6 : a neutron diffraction investigation of the crystal structures of La2MoO6 and Tb2MoO6 , 1995 .

[31]  M. Greenblatt,et al.  Oxide ion conductivity in Ln5Mo3O16+x) (Ln = La, Pr, Nd, Sm, Gd; x .apprx. 0.5) with a fluorite-related structure , 1989 .

[32]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[33]  A. Sleight,et al.  Ln2MoO6-type rare earth molybdates—Preparation and lattice parameters , 1972 .

[34]  H. Borchardt RARE-EARTH TUNGSTATES AND 1 :1 OXYTUNGSTATES , 1963 .

[35]  V. Blatov,et al.  Computational design of materials for metal-ion batteries , 2021, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.

[36]  V. Thangadurai,et al.  Novel Nd2WO6-type Sm2−xAxM1−yByO6−δ (A = Ca, Sr; M = Mo, W; B = Ce, Ni) mixed conductors , 2011 .