Deformable Face Alignment via Local Measurements and Global Constraints

This chapter will review a particular approach to deformable face alignment coined constrained local models (CLM). The approach leverages the excellent generalisation properties of local appearance representations of parts and the strong global constraints imposed by the geometrical relationships between part locations. We begin by posing CLM in the general context of deformable face alignment, highlighting its similarities and differences with other approaches and motivating its benefits. An overview of the approach is then presented, explicating its various components and touching briefly on the interrelated issues of optimisation, feature representation and geometry regularisation. The following three sections discuss each of these three components in detail. The chapter concludes with a general discussion and directions of future work.

[1]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[2]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[3]  Dorin Comaniciu,et al.  Joint Real-time Object Detection and Pose Estimation Using Probabilistic Boosting Network , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Dorin Comaniciu,et al.  Image based regression using boosting method , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[5]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Timothy F. Cootes,et al.  Feature Detection and Tracking with Constrained Local Models , 2006, BMVC.

[7]  Timothy F. Cootes,et al.  CHECK! A generic and specific industrial inspection tool , 1995 .

[8]  C. Taylor,et al.  Active shape models - 'Smart Snakes'. , 1992 .

[9]  Simon Lucey,et al.  Face alignment through subspace constrained mean-shifts , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[10]  Dorin Comaniciu,et al.  An information fusion framework for robust shape tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[12]  Ralph Gross,et al.  Generic vs. person specific active appearance models , 2005, Image Vis. Comput..

[13]  Martin Roberts,et al.  Vertebral Morphometry: Semiautomatic Determination of Detailed Shape From Dual-Energy X-ray Absorptiometry Images Using Active Appearance Models , 2006, Investigative radiology.

[14]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[15]  Bram van Ginneken,et al.  Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database , 2006, Medical Image Anal..

[16]  Horst Bischof,et al.  Fast Active Appearance Model Search Using Canonical Correlation Analysis , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Lijun Yin,et al.  Avatar-mediated face tracking and lip reading for human computer interaction , 2004, MULTIMEDIA '04.

[18]  Xiaoming Liu,et al.  Generic Face Alignment using Boosted Appearance Model , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Roland Göcke,et al.  Iterative Error Bound Minimisation for AAM Alignment , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[21]  Roland Göcke,et al.  A Nonlinear Discriminative Approach to AAM Fitting , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[22]  Simon Lucey,et al.  Subspace Constrained Mean-shift , 2009 .

[23]  J. Mercer Functions of positive and negative type, and their connection with the theory of integral equations , 1909 .

[24]  Li Bai,et al.  Face decorating system based on improved active shape models , 2006, ACE '06.

[25]  Simon Baker,et al.  Active Appearance Models Revisited , 2004, International Journal of Computer Vision.

[26]  Adrien Bartoli,et al.  Segmented AAMs Improve Person-Independent Face Fitting , 2007 .

[27]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[28]  Takeo Kanade,et al.  A Generative Shape Regularization Model for Robust Face Alignment , 2008, ECCV.

[29]  Timothy F. Cootes,et al.  Check! a generic and specific industrial inspection tool , 1996 .

[30]  Simon Lucey,et al.  Real-time avatar animation from a single image , 2011, Face and Gesture 2011.

[31]  Gustavo Carneiro,et al.  A probabilistic, hierarchical, and discriminant framework for rapid and accurate detection of deformable anatomic structure , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[32]  Yang Wang,et al.  Enforcing convexity for improved alignment with constrained local models , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Gavin C. Cawley,et al.  Towards a low bandwidth talking face using appearance models , 2003, Image Vis. Comput..

[34]  Timothy F. Cootes,et al.  Boosted Regression Active Shape Models , 2007, BMVC.

[35]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[36]  Jason M. Saragih Principal regression analysis , 2011, CVPR 2011.

[37]  Mads Nielsen,et al.  Eye typing using Markov and active appearance models , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[38]  Shaogang Gong,et al.  Recognising trajectories of facial identities using kernel discriminant analysis , 2003, Image Vis. Comput..

[39]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[40]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[41]  Gavin C. Cawley,et al.  Towards a low bandwidth talking face using appearance models , 2003, Image Vis. Comput..

[42]  Takeo Kanade,et al.  Filtered Component Analysis to Increase Robustness to Local Minima in Appearance Models , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Shaogang Gong,et al.  A Multi-View Nonlinear Active Shape Model Using Kernel PCA , 1999, BMVC.

[44]  Miguel Á. Carreira-Perpiñán,et al.  On the Number of Modes of a Gaussian Mixture , 2003, Scale-Space.

[45]  Barry-John Theobald,et al.  Robust facial feature tracking using selected multi-resolution linear predictors , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[46]  Minh Hoai Local Minima Free Parameterized Appearance Models , 2008 .

[47]  Thomas Vetter,et al.  Optimal landmark detection using shape models and branch and bound , 2011, 2011 International Conference on Computer Vision.

[48]  Avinash C. Kak,et al.  Accurate 3D Tracking of Rigid Objects with Occlusion Using Active Appearance Models , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[49]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Carlo Tomasi,et al.  Mean shift is a bound optimization , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[52]  Miguel Á. Carreira-Perpiñán,et al.  Gaussian Mean-Shift Is an EM Algorithm , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Ralph Gross,et al.  Model-Based Face De-Identification , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[54]  Timothy F. Cootes,et al.  A Comparative Evaluation of Active Appearance Model Algorithms , 1998, BMVC.

[55]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[56]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Yuandong Tian,et al.  Globally Optimal Estimation of Nonrigid Image Distortion , 2012, International Journal of Computer Vision.