Soil nematode abundance and functional group composition at a global scale

Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.High-resolution spatial maps of the global abundance of soil nematodes and the composition of functional groups show that soil nematodes are found in higher abundances in sub-Arctic regions, than in temperate or tropical regions.

Diana H. Wall | Devin Routh | Daria Kalinkina | Walter Traunspurger | Sergio Rasmann | Stefan Geisen | Qi Li | Bryan S. Griffiths | Byron J. Adams | Christian Mulder | Thomas O. Powers | Daniel G. Wright | Paul Kardol | Johan van den Hoogen | Howard Ferris | David A. Wardle | Ron G. M. de Goede | Wasim Ahmad | Walter S. Andriuzzi | Richard D. Bardgett | Michael Bonkowski | Raquel Campos-Herrera | Juvenil E. Cares | Tancredi Caruso | Larissa de Brito Caixeta | Xiaoyun Chen | Sofia R. Costa | Rachel Creamer | José Mauro da Cunha Castro | Marie Dam | Djibril Djigal | Miguel Escuer | Carmen Gutiérrez | Karin Hohberg | Alan Kergunteuil | Gerard Korthals | Valentyna Krashevska | Alexey A. Kudrin | Wenju Liang | Matthew Magilton | Mariette Marais | José Antonio Rodríguez Martín | Elizaveta Matveeva | El Hassan Mayad | Peter Mullin | Roy Neilson | T. A. Duong Nguyen | Uffe N. Nielsen | Hiroaki Okada | Juan Emilio Palomares Rius | Kaiwen Pan | Vlada Peneva | Loïc Pellissier | Julio Carlos Pereira da Silva | Camille Pitteloud | Kirsten Powers | Casper W. Quist | Sara Sánchez Moreno | Stefan Scheu | Heikki Setälä | Anna Sushchuk | Alexei V. Tiunov | Jean Trap | Wim van der Putten | Mette Vestergård | Cecile Villenave | Lieven Waeyenberge | Rutger Wilschut | Jiue-in Yang | Thomas Ward Crowther | D. Routh | T. Crowther | B. Griffiths | D. Wardle | Valentyna Krashevska | S. Scheu | D. Wright | H. Setälä | M. Bonkowski | D. Wall | R. Bardgett | P. Kardol | C. Mulder | K. Hohberg | T. Caruso | U. Nielsen | W. H. van der Putten | L. Waeyenberge | W. Putten | A. Tiunov | S. Rasmann | H. Ferris | C. Quist | R. Creamer | G. Korthals | R. Neilson | W. Liang | S. Geisen | W. Traunspurger | L. Pellissier | V. Peneva | C. Villenave | B. Adams | José Antonio Rodríguez Martín | E. Matveeva | E. Mayad | T. Powers | K. Pan | M. Marais | M. Escuer | Camille Pitteloud | A. Kergunteuil | J. Cares | R. D. de Goede | H. Okada | Qi Li | Mette Vestergård | W. Ahmad | S. R. Costa | Xiaoyun Chen | A. Sushchuk | P. Mullin | K. Powers | Matthew Magilton | J. Trap | T. A. Nguyen | R. Campos-Herrera | J. Castro | W. Andriuzzi | D. Djigal | S. S. Moreno | R. Wilschut | C. Gutiérrez | Jiue-in Yang | Larissa de Brito Caixeta | J. V. D. Hoogen | A. Kudrin | M. Dam | D. Kalinkina | J. E. P. Rius | R. Goede | Larissa de Brito Caixeta | J. C. P. Silva | Júlio Carlos Pereira da Silva | J. Hoogen | Karin Hohberg | S. Costa | T. A. D. Nguyen | Uffe N. Nielsen | Johan van den Hoogen | Byron J. Adams | Sofia R. Costa | José Mauro da Cunha Castro | José Antonio Rodríguez Martín | T. A. Duong Nguyen | Thomas O. Powers | Alan Kergunteuil | Uffe N Nielsen | M. Magilton | Ron de Goede | Byron Adams | Sofia dos | Santos da Rocha Costa | J. M. D. C. Castro | Bryan S. Griffiths | José Antonio Rodríguez Martín | Duong Nguyen | Juan Emilio | Palomares Rius | Julio Carlos Pereira da Silva | Wim van der Putten | Diana H.Wall | Daniel G. Wright | Byron J. Adams

[1]  H. Ferris,et al.  Contribution of nematodes to the structure and function of the soil food web. , 2010, Journal of nematology.

[2]  D. Neher,et al.  Role of nematodes in soil health and their use as indicators. , 2001, Journal of nematology.

[3]  R. B. Jackson,et al.  The diversity and biogeography of soil bacterial communities. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Paplinska,et al.  Oxygen Consumption By Soil-Inhabiting Nematodes , 1972 .

[5]  R. Giblin-Davis,et al.  Tropical nematode diversity: vertical stratification of nematode communities in a Costa Rican humid lowland rainforest , 2009, Molecular ecology.

[6]  Tom Bongers,et al.  The Maturity Index, the evolution of nematode life history traits, adaptive radiation and cp-scaling , 1999, Plant and Soil.

[7]  M. Chavent,et al.  ClustOfVar: An R Package for the Clustering of Variables , 2011, 1112.0295.

[8]  N. Fierer,et al.  A global atlas of the dominant bacteria found in soil , 2018, Science.

[9]  M. Zobel,et al.  Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism , 2015, Science.

[10]  M. Herman,et al.  High‐throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure , 2013, Molecular ecology.

[11]  David C. Coleman,et al.  Interactions of Bacteria, Fungi, and their Nematode Grazers: Effects on Nutrient Cycling and Plant Growth , 1985 .

[12]  L. Basten Snoek,et al.  Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion , 2018 .

[13]  Kaiwen Pan,et al.  Large-scale patterns of distribution and diversity of terrestrial nematodes , 2017 .

[14]  Lynne Boddy,et al.  Species-specific effects of soil fauna on fungal foraging and decomposition , 2011, Oecologia.

[15]  Emily S. Bernhardt,et al.  The Global Carbon Cycle , 2013 .

[16]  Peter E. Thornton,et al.  A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems , 2013 .

[17]  M. Kleiber Body size and metabolism , 1932 .

[18]  Joel E. Cohen,et al.  Bacterial traits, organism mass, and numerical abundance in the detrital soil food web of Dutch agricultural grasslands , 2004 .

[19]  E. Paplinska,et al.  Oxygen Consumption in the Developmental Stages of Panagrolaimus Rigid Us , 1974 .

[20]  Falk Hildebrand,et al.  Structure and function of the global topsoil microbiome , 2018, Nature.

[21]  N. Fierer,et al.  Relic DNA is abundant in soil and obscures estimates of soil microbial diversity , 2016, Nature Microbiology.

[22]  R. B. Jackson,et al.  THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION , 2000 .

[23]  William R. Wieder,et al.  Global soil carbon projections are improved by modelling microbial processes , 2013 .

[24]  C. Mulder,et al.  Nematode traits and environmental constraints in 200 soil systems: scaling within the 60–6000 μm body size range , 2011 .

[25]  M. Firestone,et al.  Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses , 2013, The ISME Journal.

[26]  T. Bongers,et al.  Feeding habits in soil nematode families and genera-an outline for soil ecologists. , 1993, Journal of nematology.

[27]  Edward Ayres,et al.  Molecular study of worldwide distribution and diversity of soil animals , 2011, Proceedings of the National Academy of Sciences.

[28]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[29]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[30]  R. Milo,et al.  The biomass distribution on Earth , 2018, Proceedings of the National Academy of Sciences.

[31]  E. Paul,et al.  Soil microbiology, ecology, and biochemistry , 2015 .

[32]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[33]  Richard D. Bardgett,et al.  Belowground biodiversity and ecosystem functioning , 2014, Nature.

[34]  R. Knight,et al.  Global patterns in bacterial diversity , 2007, Proceedings of the National Academy of Sciences.

[35]  D L Procter Global Overview of the Functional Roles of Soil-living Nematodes in Terrestrial Communities and Ecosystems. , 1990, Journal of nematology.

[36]  B. Boag,et al.  Soil nematode biodiversity in terrestrial ecosystems , 1998, Biodiversity & Conservation.

[37]  Björn Sohlenius,et al.  Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems , 1980 .

[38]  Erin K. Cameron,et al.  Global gaps in soil biodiversity data , 2018, Nature Ecology & Evolution.

[39]  Marvin N. Wright,et al.  SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.

[40]  Diana H. Wall,et al.  Global‐scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties , 2014 .

[41]  C. Ettema,et al.  Soil nematode diversity: species coexistence and ecosystem function. , 1998, Journal of nematology.

[42]  Marvin N. Wright,et al.  Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables , 2018, PeerJ.

[43]  Daniel S Maynard,et al.  A test of the hierarchical model of litter decomposition , 2017, Nature Ecology & Evolution.

[44]  R. Henrik Nilsson,et al.  Global diversity and geography of soil fungi , 2014, Science.

[45]  M. Bradford,et al.  Global patterns in belowground communities. , 2009, Ecology letters.

[46]  Bart R. Johnson,et al.  Quantifying global soil carbon losses in response to warming , 2016, Nature.

[47]  Noah Fierer,et al.  Global drivers and patterns of microbial abundance in soil , 2013 .

[48]  Tom Bongers,et al.  The maturity index: an ecological measure of environmental disturbance based on nematode species composition , 1990, Oecologia.