Design of an Autonomous Precision Pollination Robot

Precision robotic pollination systems can not only fill the gap of declining natural pollinators, but can also surpass them in efficiency and uniformity, helping to feed the fast-growing human population on Earth. This paper presents the design and ongoing development of an autonomous robot named “BrambleBee”, which aims at pollinating bramble plants in a greenhouse environment. Partially inspired by the ecology and behavior of bees, BrambleBee employs state-of-the-art localization and mapping, visual perception, path planning, motion control, and manipulation techniques to create an efficient and robust autonomous pollination system.

[1]  Radhika Nagpal,et al.  Flight of the robobees. , 2013, Scientific American.

[2]  Ellips Masehian,et al.  A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning , 2004, J. Field Robotics.

[3]  Francisco José Madrid-Cuevas,et al.  Generation of fiducial marker dictionaries using Mixed Integer Linear Programming , 2016, Pattern Recognit..

[4]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[5]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[6]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[7]  Eric Claesen,et al.  Autonomous Fruit Picking Machine: A Robotic Apple Harvester , 2007, FSR.

[8]  Albert-Jan Baerveldt,et al.  An Agricultural Mobile Robot with Vision-Based Perception for Mechanical Weed Control , 2002, Auton. Robots.

[9]  Yu Gu,et al.  Cataglyphis: An autonomous sample return rover , 2018, J. Field Robotics.

[10]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[11]  Roland Siegwart,et al.  A Toolbox for Easily Calibrating Omnidirectional Cameras , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Ricardo Carelli,et al.  Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection , 2011 .

[13]  David C. Slaughter,et al.  Autonomous robotic weed control systems: A review , 2008 .

[14]  J. Lowenberg‐DeBoer,et al.  Precision Agriculture and Sustainability , 2004, Precision Agriculture.

[15]  Y. Glik,et al.  Stabilization of a mobile robotic arm for precise spraying and pollinating in tall trees. , 2008 .

[16]  Frank Dellaert,et al.  The Bayes Tree: An Algorithmic Foundation for Probabilistic Robot Mapping , 2010, WAFR.

[17]  Spring Berman,et al.  Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination , 2011, 2011 IEEE International Conference on Robotics and Automation.

[18]  George Kantor,et al.  The Robotanist: A ground-based agricultural robot for high-throughput crop phenotyping , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[19]  F. Dellaert Factor Graphs and GTSAM: A Hands-on Introduction , 2012 .

[20]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[21]  Yu Gu,et al.  Robot Foraging: Autonomous Sample Return in a Large Outdoor Environment , 2018, IEEE Robotics & Automation Magazine.

[22]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  J. Bontsema,et al.  An Autonomous Robot for Harvesting Cucumbers in Greenhouses , 2002, Auton. Robots.

[24]  Gilbert Laporte,et al.  Arc Routing Problems, Part I: The Chinese Postman Problem , 1995, Oper. Res..

[25]  Martin Erwig,et al.  The graph Voronoi diagram with applications , 2000, Networks.

[26]  Peter Biber,et al.  Plant detection and mapping for agricultural robots using a 3D LIDAR sensor , 2011, Robotics Auton. Syst..

[27]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[28]  Rory C. Flemmer,et al.  Development of an autonomous kiwifruit picking robot , 2000, 2009 4th International Conference on Autonomous Robots and Agents.

[29]  Knut Faegri,et al.  The principles of pollination ecology , 1967 .

[30]  José Blasco,et al.  AE—Automation and Emerging Technologies: Robotic Weed Control using Machine Vision , 2002 .

[31]  H. G. Baker,et al.  Insects as Flower Visitors and Pollinators , 1983 .

[32]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[33]  J. Bouma,et al.  Future Directions of Precision Agriculture , 2005, Precision Agriculture.

[34]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[35]  W. S. Lee,et al.  Robotic Weed Control System for Tomatoes , 2004, Precision Agriculture.

[36]  Dinesh Manocha,et al.  FCL: A general purpose library for collision and proximity queries , 2012, 2012 IEEE International Conference on Robotics and Automation.

[37]  Chunhua Zhang,et al.  The application of small unmanned aerial systems for precision agriculture: a review , 2012, Precision Agriculture.

[38]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[39]  M. Dror Arc Routing : Theory, Solutions and Applications , 2000 .

[40]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[41]  Patrick Beeson,et al.  TRAC-IK: An open-source library for improved solving of generic inverse kinematics , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[42]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[43]  Sos S. Agaian,et al.  A vision feedback robotic docking crane system with application to vanilla pollination , 2013, Int. J. Autom. Control..

[44]  Francisco José Madrid-Cuevas,et al.  Automatic generation and detection of highly reliable fiducial markers under occlusion , 2014, Pattern Recognit..

[45]  Yoav Sarig,et al.  Robotics of Fruit Harvesting: A State-of-the-art Review , 1993 .

[46]  F. López-Granados,et al.  Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images , 2013, PloS one.

[47]  David L. Hu,et al.  Sticky Solution Provides Grip for the First Robotic Pollinator , 2017 .

[48]  Wei Li,et al.  An autonomous pollination robot for hormone treatment of tomato flower in greenhouse , 2016, 2016 3rd International Conference on Systems and Informatics (ICSAI).

[49]  Tristan Perez,et al.  Autonomous Sweet Pepper Harvesting for Protected Cropping Systems , 2017, IEEE Robotics and Automation Letters.