Trypanosoma cruzi infection in mammals in Florida: New insight into the transmission of T. cruzi in the southeastern United States

[1]  S. Wisely,et al.  Identification of the parasite, Trypanosoma cruzi, in multiple tissues of epidemiological significance in the Virginia opossum (Didelphis virginiana): Implications for environmental and vertical transmission routes , 2022, PLoS neglected tropical diseases.

[2]  S. Wisely,et al.  Our Current Understanding of Chagas Disease and Trypanosoma cruzi Infection in the State of Florida — an Update on Research in this Region of the USA , 2022, Current Tropical Medicine Reports.

[3]  B. Alarcón de Noya,et al.  Chagas Disease Expands Its Epidemiological Frontiers From Rural to Urban Areas , 2022, Frontiers in Tropical Diseases.

[4]  S. Hamer,et al.  Chagas Disease Ecology in the United States: Recent Advances in Understanding Trypanosoma cruzi Transmission Among Triatomines, Wildlife, and Domestic Animals and a Quantitative Synthesis of Vector-Host Interactions. , 2021, Annual review of animal biosciences.

[5]  S. Wisely,et al.  Anaphylactic Reactions Due to Triatoma protracta (Hemiptera, Reduviidae, Triatominae) and Invasion into a Home in Northern California, USA , 2021, Insects.

[6]  D. Gorla,et al.  Effect of habitat fragmentation on rural house invasion by sylvatic triatomines: A multiple landscape-scale approach , 2021, PLoS neglected tropical diseases.

[7]  K. Waldrup,et al.  Surveillance of Trypanosoma cruzi infection in Triatomine vectors, feral dogs and cats, and wild animals in and around El Paso county, Texas, and New Mexico , 2021, PLoS neglected tropical diseases.

[8]  Bruno M. Ghersi,et al.  In the heart of the city: Trypanosoma cruzi infection prevalence in rodents across New Orleans , 2020, Parasites & Vectors.

[9]  T. Stankowich,et al.  Landscape-scale differences among cities alter common species' responses to urbanization. , 2020, Ecological applications : a publication of the Ecological Society of America.

[10]  E. Dumonteil,et al.  Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana , 2020, Molecular ecology.

[11]  S. Klotz,et al.  Autochthonous Chagas Disease in the United States: How Are People Getting Infected? , 2020, The American journal of tropical medicine and hygiene.

[12]  Claudia P Herrera,et al.  Raccoons As an Important Reservoir for Trypanosoma cruzi: A Prevalence Study from Two Metropolitan Areas in Louisiana. , 2020, Vector borne and zoonotic diseases.

[13]  L. Auckland,et al.  Trypanosoma cruzi infections and associated pathology in urban-dwelling Virginia opossums (Didelphis virginiana) , 2020, International journal for parasitology. Parasites and wildlife.

[14]  L. Messenger,et al.  Chagas Disease in the United States: a Public Health Approach , 2019, Clinical Microbiology Reviews.

[15]  D. Civitello,et al.  Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  L. Auckland,et al.  Analysis of over 1500 triatomine vectors from across the US, predominantly Texas, for Trypanosoma cruzi infection and discrete typing units. , 2018, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[17]  L. Auckland,et al.  Trypanosoma cruzi discrete typing unit TcIV implicated in a case of acute disseminated canine Chagas disease. , 2018, Veterinary parasitology, regional studies and reports.

[18]  E. Dumonteil,et al.  Evolutionary ecology of Chagas disease; what do we know and what do we need? , 2017, Evolutionary applications.

[19]  J. Ramírez,et al.  First external quality assurance program for bloodstream Real-Time PCR monitoring of treatment response in clinical trials of Chagas disease , 2017, PloS one.

[20]  S. Hamer,et al.  Toward an Ecological Framework for Assessing Reservoirs of Vector-Borne Pathogens: Wildlife Reservoirs of Trypanosoma cruzi across the Southern United States , 2017, ILAR journal.

[21]  K. Murray,et al.  Molecular identification and genotyping of Trypanosoma cruzi DNA in autochthonous Chagas disease patients from Texas, USA. , 2017, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[22]  S. Hamer,et al.  Epidemiology and Molecular Typing of Trypanosoma cruzi in Naturally-Infected Hound Dogs and Associated Triatomine Vectors in Texas, USA , 2017, PLoS neglected tropical diseases.

[23]  S. Montgomery,et al.  What Do We Know About Chagas Disease in the United States? , 2016, The American journal of tropical medicine and hygiene.

[24]  S. Magle,et al.  Habitat Dynamics of the Virginia Opossum in a Highly Urban Landscape , 2016 .

[25]  S. Hamer,et al.  High Trypanosoma cruzi infection prevalence associated with minimal cardiac pathology among wild carnivores in central Texas , 2016, International journal for parasitology. Parasites and wildlife.

[26]  A. L. R. Roque,et al.  The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment. , 2015, Acta tropica.

[27]  R. Gürtler,et al.  Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. , 2015, Acta tropica.

[28]  R. Gürtler,et al.  Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples , 2015, PLoS neglected tropical diseases.

[29]  D. Wesson,et al.  Genotype diversity of Trypanosoma cruzi in small rodents and Triatoma sanguisuga from a rural area in New Orleans, Louisiana , 2015, Parasites & Vectors.

[30]  M. Stoskopf Handbook of Wildlife Chemical Immobilization , 2014 .

[31]  P. Dorn,et al.  Kissing Bugs in the United States: Risk for Vector-Borne Disease in Humans , 2014, Environmental health insights.

[32]  C. McAlpine,et al.  Wildlife disease prevalence in human‐modified landscapes , 2013, Biological reviews of the Cambridge Philosophical Society.

[33]  J. Ramírez,et al.  Analytical Performance of a Multiplex Real-Time PCR Assay Using TaqMan Probes for Quantification of Trypanosoma cruzi Satellite DNA in Blood Samples , 2013, PLoS neglected tropical diseases.

[34]  S. Randolph,et al.  Drivers, dynamics, and control of emerging vector-borne zoonotic diseases , 2012, The Lancet.

[35]  L V Kirchhoff,et al.  American Trypanosomiasis (Chagas Disease) , 2012, Red Book (2012).

[36]  Jeffrey D. Wright,et al.  Influences of an Urban Environment on Home Range and Body Mass of Virginia Opossums (Didelphis virginiana) , 2012 .

[37]  R. Eisen,et al.  What Do We Need to Know about Disease Ecology to Prevent Lyme Disease in the Northeastern United States? , 2012, Journal of medical entomology.

[38]  S. Montgomery,et al.  Trypanosoma cruzi and Chagas' Disease in the United States , 2011, Clinical Microbiology Reviews.

[39]  F. Tripet,et al.  Genetics and evolution of triatomines: from phylogeny to vector control , 2011, Heredity.

[40]  B. Forschler,et al.  Biogeography of Triatoma sanguisuga (Hemiptera: Reduviidae) on Two Barrier Islands off the Coast of Georgia, United States , 2011, Journal of medical entomology.

[41]  R. Ostfeld Lyme Disease: The Ecology of a Complex System , 2010 .

[42]  M. Gompper,et al.  Seroprevalence of Trypanosoma cruzi among eleven potential reservoir species from six states across the southern United States. , 2010, Vector borne and zoonotic diseases.

[43]  A. Ellis,et al.  Genetically different isolates of Trypanosoma cruzi elicit different infection dynamics in raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana). , 2009, International journal for parasitology.

[44]  S. Montgomery,et al.  An estimate of the burden of Chagas disease in the United States. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[45]  A. Jansen,et al.  Trypanosoma cruzi: adaptation to its vectors and its hosts , 2009, Veterinary research.

[46]  K. Snowden,et al.  Biogeography and Trypanosoma cruzi infection prevalence of Chagas disease vectors in Texas, USA. , 2009, Vector borne and zoonotic diseases.

[47]  A. Jansen,et al.  Effects of habitat fragmentation on wild mammal infection by Trypanosoma cruzi , 2007, Parasitology.

[48]  Jeffrey Shaman,et al.  Amplification due to spatial clustering in an individual-based model of mosquito-avian arbovirus transmission. , 2007, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[49]  P. Dorn,et al.  Autochthonous Transmission of Trypanosoma cruzi, Louisiana , 2007, Emerging infectious diseases.

[50]  S. Altizer,et al.  Urbanization and the ecology of wildlife diseases , 2006, Trends in Ecology & Evolution.

[51]  J. Koprowski The response of tree squirrels to fragmentation: a review and synthesis , 2005 .

[52]  M. Woolhouse,et al.  Emerging pathogens: the epidemiology and evolution of species jumps , 2005, Trends in Ecology & Evolution.

[53]  M. Llewellyn,et al.  Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. , 2005, International journal for parasitology.

[54]  R. W. Humphry,et al.  A practical approach to calculate sample size for herd prevalence surveys. , 2004, Preventive veterinary medicine.

[55]  S. Gehrt,et al.  INFLUENCES OF ANTHROPOGENIC RESOURCES ON RACCOON (PROCYON LOTOR) MOVEMENTS AND SPATIAL DISTRIBUTION , 2004 .

[56]  L. Marinelli North American Tree Squirrels , 2004 .

[57]  L. H. Taylor,et al.  Identifying Reservoirs of Infection: A Conceptual and Practical Challenge , 2002, Emerging infectious diseases.

[58]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[59]  R. Chuit,et al.  Evaluation of dogs as sentinels of the transmission of Trypanosoma cruzi in a rural area of north-western Argentina. , 1998, Annals of tropical medicine and parasitology.

[60]  L. Hansen,et al.  Managing Forests to Maintain Populations of Gray and Fox Squirrels , 1987 .

[61]  R. Isturiz,et al.  Chagas Disease , 2021, Neglected Tropical Diseases.

[62]  P. F. Olsen,et al.  INCIDENCE OF TRYPANOSOMA CRUZI (CHAGAS) IN WILD VECTORS AND RESERVOIRS IN EAST-CENTRAL ALABAMA. , 1964, The Journal of parasitology.

[63]  D. J. Taylor,et al.  Key to Florida Triatoma with Additional Distribution Records for the Species (Hemiptera, Reduviidae) , 1948 .

[64]  全忠 林,et al.  Trypanosoma cruzi , 1937, CABI Compendium.

[65]  P. Dorn,et al.  Triatoma sanguisuga blood meals and potential for Chagas disease, Louisiana, USA. , 2014, Emerging infectious diseases.

[66]  A. L. R. Roque,et al.  Domestic and Wild Mammalian Reservoirs , 2010 .

[67]  A. Mead,et al.  Determining the Prevalence of Trypanosoma cruzi in Road-Killed Opossums (Didelphis virginiana) from Baldwin County, Georgia, Using Polymerase Chain Reaction , 2010 .

[68]  J. Koprowski Handling tree squirrels with a safe and efficient restraint , 2002 .

[69]  M. Yabsley,et al.  SEROPREVALENCE OF TRYPANOSOMA CRUZIIN RACCOONS FROM SOUTH CAROLINA AND GEORGIA , 2002, Journal of wildlife diseases.

[70]  Peter J. Hudson,et al.  The ecology of wildlife diseases , 2002 .

[71]  F. Watts Genetics and evolution. , 1983, Isozymes.