Using a classifier pool in accuracy based tracking of recurring concepts in data stream classification

[1]  Xin Yao,et al.  DDD: A New Ensemble Approach for Dealing with Concept Drift , 2012, IEEE Transactions on Knowledge and Data Engineering.

[2]  Hamid Beigy,et al.  Pool and Accuracy Based Stream Classification: A New Ensemble Algorithm on Data Stream Classification Using Recurring Concepts Detection , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[3]  Robi Polikar,et al.  Incremental Learning of Concept Drift in Nonstationary Environments , 2011, IEEE Transactions on Neural Networks.

[4]  Ernestina Menasalvas Ruiz,et al.  Learning recurring concepts from data streams with a context-aware ensemble , 2011, SAC.

[5]  Geoff Holmes,et al.  Accurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking , 2010, ACML.

[6]  Žliobait . e,et al.  Learning under Concept Drift: an Overview , 2010 .

[7]  Saso Dzeroski,et al.  Learning model trees from evolving data streams , 2010, Data Mining and Knowledge Discovery.

[8]  Geoff Holmes,et al.  MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..

[9]  Grigorios Tsoumakas,et al.  Tracking recurring contexts using ensemble classifiers: an application to email filtering , 2009, Knowledge and Information Systems.

[10]  Ludmila I. Kuncheva,et al.  On the window size for classification in changing environments , 2009, Intell. Data Anal..

[11]  Albert Bifet,et al.  Adaptive learning and mining for data streams and frequent patterns , 2009, SKDD.

[12]  Hossein Morshedlou,et al.  A New History Based Method to Handle the Recurring Concept Shifts in Data Streams , 2009 .

[13]  Luis Mateus Rocha,et al.  Proceedings of the 14th Portuguese Conference on Artificial Intelligence: Progress in Artificial Intelligence , 2009 .

[14]  João Gama,et al.  Tracking Recurring Concepts with Meta-learners , 2009, EPIA.

[15]  Latifur Khan,et al.  Lacking Labels in the Stream: Classifying Evolving Stream Data with Few Labels , 2009, ISMIS.

[16]  Philip S. Yu,et al.  Classifying Data Streams with Skewed Class Distributions and Concept Drifts , 2008, IEEE Internet Computing.

[17]  Raj Bhatnagar,et al.  Tracking recurrent concept drift in streaming data using ensemble classifiers , 2007, Sixth International Conference on Machine Learning and Applications (ICMLA 2007).

[18]  Marcus A. Maloof,et al.  Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts , 2007, J. Mach. Learn. Res..

[19]  Jiawei Han,et al.  On Appropriate Assumptions to Mine Data Streams: Analysis and Practice , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[20]  João Gama,et al.  An Adaptive Prequential Learning Framework for Bayesian Network Classifiers , 2006, PKDD.

[21]  João Gama,et al.  Learning with Local Drift Detection , 2006, ADMA.

[22]  Marcus A. Maloof,et al.  Using additive expert ensembles to cope with concept drift , 2005, ICML.

[23]  Ralf Klinkenberg,et al.  Learning drifting concepts: Example selection vs. example weighting , 2004, Intell. Data Anal..

[24]  KlinkenbergRalf Learning drifting concepts: Example selection vs. example weighting , 2004 .

[25]  Arkady B. Zaslavsky,et al.  Towards a theory of context spaces , 2004, IEEE Annual Conference on Pervasive Computing and Communications Workshops, 2004. Proceedings of the Second.

[26]  João Gama,et al.  Forest trees for on-line data , 2004, SAC '04.

[27]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[28]  Geoff Hulten,et al.  Mining time-changing data streams , 2001, KDD '01.

[29]  William Nick Street,et al.  A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.

[30]  Geoff Hulten,et al.  Mining high-speed data streams , 2000, KDD '00.

[31]  Thorsten Joachims,et al.  Detecting Concept Drift with Support Vector Machines , 2000, ICML.

[32]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[33]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[34]  Gerhard Widmer,et al.  Effective Learning in Dynamic Environments by Explicit Context Tracking , 1993, ECML.

[35]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[36]  Ronald L. Rivest,et al.  Learning Time-Varying Concepts , 1990, NIPS.

[37]  Manfred K. Warmuth,et al.  The weighted majority algorithm , 1989, 30th Annual Symposium on Foundations of Computer Science.

[38]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[39]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[40]  Indre Zliobaite,et al.  Learning under Concept Drift: an Overview , 2010, ArXiv.

[41]  Albert Bifet,et al.  Massive Online Analysis , 2009 .

[42]  Roman Garnett,et al.  Learning from data streams with concept drift , 2008 .

[43]  Gladys Castillo,et al.  Adaptive learning algorithms for Bayesian network classifiers , 2008, AI Commun..

[44]  Kyosuke Nishida,et al.  Learning and Detecting Concept Drift , 2008 .

[45]  Ricard Gavaldà,et al.  Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.

[46]  Ralf Klinkenberg,et al.  Boosting classifiers for drifting concepts , 2007, Intell. Data Anal..

[47]  João Gama,et al.  Decision trees for mining data streams , 2006, Intell. Data Anal..

[48]  Mihai Lazarescu,et al.  A Multi-Resolution Learning Approach to Tracking Concept Drift and Recurrent Concepts , 2005, PRIS.

[49]  Ralf Klinkenberg,et al.  An Ensemble Classifier for Drifting Concepts , 2005 .

[50]  A. Bifet,et al.  Early Drift Detection Method , 2005 .

[51]  Alexey Tsymbal,et al.  The problem of concept drift: definitions and related work , 2004 .

[52]  Philip M. Long,et al.  Tracking drifting concepts by minimizing disagreements , 2004, Machine Learning.

[53]  J. C. Schlimmer,et al.  Incremental learning from noisy data , 2004, Machine Learning.

[54]  Kenneth O. Stanley Learning Concept Drift with a Committee of Decision Trees , 2003 .

[55]  Yoav Freund,et al.  Game theory, on-line prediction and boosting , 1996, COLT '96.