Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex.

Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.

[1]  B. Connors,et al.  Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro , 1991, Neuroscience.

[2]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[3]  D. Fitzpatrick The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. , 1996, Cerebral cortex.

[4]  M. Wong-Riley,et al.  Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[5]  T A Woolsey,et al.  Axonal trajectories between mouse somatosensory thalamus and cortex , 1987, The Journal of comparative neurology.

[6]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[7]  D. Simons,et al.  Thalamocortical Angular Tuning Domains within Individual Barrels of Rat Somatosensory Cortex , 2003, The Journal of Neuroscience.

[8]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[9]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[10]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[11]  Andrea Hasenstaub,et al.  Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. , 2003, Cerebral cortex.

[12]  J. Bolz,et al.  Relationships between dendritic morphology and cytochrome oxidase compartments in monkey striate cortex , 1992, The Journal of comparative neurology.

[13]  W. Greenough,et al.  Dendritic pattern formation involves both oriented regression and oriented growth in the barrels of mouse somatosensory cortex. , 1988, Brain research.

[14]  Christian Stricker,et al.  Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex. , 2004, Journal of neurophysiology.

[15]  D. F. Wann,et al.  Mouse SmI cortex: qualitative and quantitative classification of golgi-impregnated barrel neurons. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[17]  D J Simons,et al.  Functional independence of layer IV barrels in rodent somatosensory cortex. , 1999, Journal of neurophysiology.

[18]  B. Sakmann,et al.  The Excitatory Neuronal Network of Rat Layer 4 Barrel Cortex , 2000, The Journal of Neuroscience.

[19]  D. Simons,et al.  Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. , 1990, Somatosensory & motor research.

[20]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[21]  R. Kötter,et al.  Cell Type-Specific Circuits of Cortical Layer IV Spiny Neurons , 2003, The Journal of Neuroscience.

[22]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[23]  Alexander M Binshtok,et al.  Functionally Distinct NMDA Receptors Mediate Horizontal Connectivity within Layer 4 of Mouse Barrel Cortex , 1998, Neuron.

[24]  Bert Sakmann,et al.  Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole‐cell voltage recording and morphological reconstruction , 2002, The Journal of physiology.

[25]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[26]  M. J. Katz,et al.  Comparative analysis of dendritic architecture of identified neurons using the Hausdorff distance metric , 2000, The Journal of comparative neurology.

[27]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[28]  R. S. Waters,et al.  Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat , 2000, Experimental Brain Research.

[29]  John R Huguenard,et al.  Barrel Cortex Microcircuits: Thalamocortical Feedforward Inhibition in Spiny Stellate Cells Is Mediated by a Small Number of Fast-Spiking Interneurons , 2006, The Journal of Neuroscience.

[30]  H. Killackey Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. , 1973, Brain research.

[31]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[32]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[33]  D. Simons,et al.  Morphology of Golgi‐Cox‐impregnated barrel neurons in rat SmI cortex , 1984, The Journal of comparative neurology.

[34]  T A Woolsey,et al.  Local intra‐ and interlaminar connections in mouse barrel cortex , 1990, The Journal of comparative neurology.

[35]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[36]  A. Frick,et al.  NMDA and AMPA receptors on neocortical neurons are differentially distributed , 1998, The European journal of neuroscience.

[37]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[38]  Daniel J Simons,et al.  Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis. , 2003, Journal of neurophysiology.

[39]  M. Andermann,et al.  A somatotopic map of vibrissa motion direction within a barrel column , 2006, Nature Neuroscience.

[40]  D. Simons Neuronal Integration in the Somatosensory Whisker/Barrel Cortex , 1995 .

[41]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[42]  E. Callaway,et al.  Functional Streams and Local Connections of Layer 4C Neurons in Primary Visual Cortex of the Macaque Monkey , 1998, The Journal of Neuroscience.

[43]  J C Anderson,et al.  Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[44]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[45]  Bernhard Hellwig,et al.  A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex , 2000, Biological Cybernetics.

[46]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[47]  M. Deschenes,et al.  A Map of Angular Tuning Preference in Thalamic Barreloids , 2003, The Journal of Neuroscience.

[48]  R. R. Sturrock,et al.  Cerebral Cortex, vol 1. Cellular Components of the Cerebral Cortex , 1985, Neurology.

[49]  A. Keller,et al.  Neonatal whisker clipping alters intracortical, but not thalamocortical projections, in rat barrel cortex , 1999, The Journal of comparative neurology.

[50]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[51]  R. Yuste,et al.  Neuronal domains in developing neocortex. , 1992, Science.

[52]  Randy M Bruno,et al.  The Role of Thalamic Inputs in Surround Receptive Fields of Barrel Neurons , 2005, The Journal of Neuroscience.

[53]  A. Leventhal,et al.  Structural basis of orientation sensitivity of cat retinal ganglion cells , 1983, The Journal of comparative neurology.

[54]  S. Reppert,et al.  A Clockwork Explosion! , 1998, Neuron.

[55]  V. Mountcastle,et al.  An organizing principle for cerebral function : the unit module and the distributed system , 1978 .

[56]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[57]  D. Simons,et al.  Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. , 2003, Cerebral cortex.

[58]  Asaf Keller,et al.  Functional independence of layer IV barrels. , 2002, Journal of neurophysiology.

[59]  J. Bolz,et al.  Relationships between dendritic fields and functional architecture in striate cortex of normal and visually deprived cats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  J. A. Hirsch Synaptic integration in layer IV of the ferret striate cortex. , 1995, The Journal of physiology.

[61]  J. S. Barlow The mindful brain: B.M. Edelman and V.B. Mountcastle (MIT Press, Cambridge, Mass., 1978, 100 p., U.S. $ 10.00) , 1979 .

[62]  Kevin Fox,et al.  The Origin of Cortical Surround Receptive Fields Studied in the Barrel Cortex , 2003, The Journal of Neuroscience.

[63]  P. Land,et al.  Subbarrel domains in rat somatosensory (S1) cortex , 2005, The Journal of comparative neurology.

[64]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[65]  C. Enroth-Cugell,et al.  of Cat Retinal Ganglion Cells , 1987 .

[66]  E. G. Jones,et al.  Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey , 1975, The Journal of comparative neurology.

[67]  T. Wiesel,et al.  Local circuits and ocular dominance columns in monkey striate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  J. B. Levitt,et al.  Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases for neuroanatomically realistic models. , 1995, Journal of anatomy.

[69]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[70]  J. C. Anderson,et al.  Dendritic asymmetry cannot account for directional responses of neurons in visual cortex , 1999, Nature Neuroscience.

[71]  S. Nelson,et al.  Dynamics of neuronal processing in rat somatosensory cortex , 1999, Trends in Neurosciences.

[72]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[73]  D. Simons,et al.  Cytochrome oxidase staining in the rat smI barrel cortex , 1985, The Journal of comparative neurology.

[74]  H. Loos,et al.  Early lesions of mouse vibrissal follicles: Their influence on dendrite orientation in the cortical barrelfield , 2004, Experimental Brain Research.

[75]  Chris Tailby,et al.  Activity-dependent maintenance and growth of dendrites in adult cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.