暂无分享,去创建一个
Leonidas J. Guibas | Ioannis Mitliagkas | Olga Diamanti | Panos Achlioptas | Ioannis Mitliagkas | L. Guibas | Panos Achlioptas | Olga Diamanti | L. Guibas
[1] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[2] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[3] Yoshua Bengio,et al. A Generative Process for sampling Contractive Auto-Encoders , 2012, ICML 2012.
[4] Andrew L. Maas. Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .
[5] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[6] Song Bai,et al. Deep learning representation using autoencoder for 3D shape retrieval , 2014, Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC).
[7] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[8] Eric Chown,et al. Cognitive Modeling , 2014, Computing Handbook, 3rd ed..
[9] Subhransu Maji,et al. Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).
[10] Jianxiong Xiao,et al. 3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[11] Navdeep Jaitly,et al. Adversarial Autoencoders , 2015, ArXiv.
[12] Leonidas J. Guibas,et al. Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[13] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[14] Qi-Xing Huang,et al. Dense Human Body Correspondences Using Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[15] Soumith Chintala,et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.
[16] Kilian Q. Weinberger,et al. Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48 , 2016 .
[17] Xavier Bresson,et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.
[18] Ole Winther,et al. Autoencoding beyond pixels using a learned similarity metric , 2015, ICML.
[19] Yoshua Bengio,et al. Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[20] Lantao Yu,et al. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient , 2016, AAAI.
[21] Léon Bottou,et al. Wasserstein GAN , 2017, ArXiv.
[22] Dimitris N. Metaxas,et al. StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).
[23] Yoshua Bengio,et al. Mode Regularized Generative Adversarial Networks , 2016, ICLR.