An Introduction to Flapping Wing Aerodynamics

1. Introduction 2. Rigid fixed wing aerodynamics 3. Rigid flapping wing aerodynamics 4. Flexible wing aerodynamics 5. Future perspectives.

[1]  Bingen Yang,et al.  New Numerical Method for Two-Dimensional Partially Wrinkled Membranes , 2003 .

[2]  Adrian L. R. Thomas,et al.  Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke? , 2009, Journal of The Royal Society Interface.

[3]  S. Sunada,et al.  FUNDAMENTAL ANALYSIS OF THREE-DIMENSIONAL ‘NEAR FLING’ , 1993 .

[4]  S. Vogel Life in Moving Fluids: The Physical Biology of Flow , 1981 .

[5]  C. H. Greenewalt The Flight of Birds: The Significant Dimensions, Their Departure from the Requirements for Dimensional Similarity, and the Effect on Flight Aerodynamics of That Departure , 1975 .

[6]  B. Tobalske,et al.  Lift production in the hovering hummingbird , 2009, Proceedings of the Royal Society B: Biological Sciences.

[7]  J. Lai,et al.  Jet characteristics of a plunging airfoil , 1999 .

[8]  T. Colonius,et al.  Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers , 2009, Journal of Fluid Mechanics.

[9]  John Young,et al.  Flapping Wing Aerodynamics: Progress and Challenges , 2008 .

[10]  A Hedenström,et al.  Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel , 2006, Journal of The Royal Society Interface.

[11]  Wei Shyy,et al.  Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring , 2008 .

[12]  S. Alben,et al.  Coherent locomotion as an attracting state for a free flapping body. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Xi-Yun Lu,et al.  Locomotion of a passively flapping flat plate , 2010, Journal of Fluid Mechanics.

[14]  Wei Shyy,et al.  Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil , 2006 .

[15]  Adrian L. R. Thomas,et al.  Leading-edge vortices in insect flight , 1996, Nature.

[16]  S. Murata,et al.  Aerodynamic characteristics of a two-dimensional porous sail , 1989, Journal of Fluid Mechanics.

[17]  Kyuro Sasaki,et al.  Free-stream turbulence effects on a separation bubble , 1983 .

[18]  Robert A. Ormiston,et al.  Theoretical and experimental aerodynamics of the sailwing , 1971 .

[19]  C. Ellington The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis , 1984 .

[20]  F. Lehmann,et al.  The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). , 1998, The Journal of experimental biology.

[21]  K. Breuer,et al.  Time-resolved wake structure and kinematics of bat flight , 2009 .

[22]  Dragos Viieru,et al.  Static Aeroelastic Model Validation of Membrane Micro Air Vehicle Wings , 2007 .

[23]  Z. J. Wang,et al.  Fruit flies modulate passive wing pitching to generate in-flight turns. , 2009, Physical review letters.

[24]  Erwan Verron,et al.  Dynamic inflation of non‐linear elastic and viscoelastic rubber‐like membranes , 2001 .

[25]  Adrian L. R. Thomas,et al.  The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex , 2005, Journal of Experimental Biology.

[26]  P. Lissaman,et al.  Low-Reynolds-Number Airfoils , 1983 .

[27]  E. Dick,et al.  Modelling of bypass transition with conditioned Navier-Stokes equations coupled to an intermittency transport equation , 1996 .

[28]  W. Shyy,et al.  Rigid and Flexible Low Reynolds Number Airfoils , 1999 .

[29]  Adrian L. R. Thomas,et al.  Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack , 2004, Journal of Experimental Biology.

[30]  M. L. Henderson,et al.  Low-speed single-element airfoil synthesis , 1979 .

[31]  A. Hedenström,et al.  Leading-Edge Vortex Improves Lift in Slow-Flying Bats , 2008, Science.

[32]  John J. Lucas,et al.  Fatigue Strength Improvements in Ti-6Al-4V Forgings , 1972 .

[33]  L. F. Crabtree,et al.  Effects of Leading-Edge Separation on Thin Wings in Two-Dimensional Incompressible Flow , 1957 .

[34]  U. Norberg Structure, form, and function of flight in engineering and the living world. , 2002 .

[35]  R. Wootton Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta, Papilionoidea) , 1993 .

[36]  Jean-Marc Vanden-Broeck,et al.  Shape of a sail in a flow , 1981 .

[37]  S. Vogel Flight in Drosophila : III. Aerodynamic Characteristics of Fly Wing Sand Wing Models , 1967 .

[38]  Mao Sun,et al.  Lift and power requirements of hovering flight in Drosophila virilis. , 2002, The Journal of experimental biology.

[39]  Daegyoum Kim,et al.  Characteristics of vortex formation and thrust performance in drag-based paddling propulsion , 2011, Journal of Experimental Biology.

[40]  Jun Zhang,et al.  Surprising behaviors in flapping locomotion with passive pitching , 2010 .

[41]  J. T. Oden,et al.  Finite strains and displacements of elastic membranes by the finite element method , 1967 .

[42]  G. E. Goslow,et al.  Bird Flight: Insights and Complications , 1990 .

[43]  K. S. Yeo,et al.  Aerodynamic forces and flow fields of a two-dimensional hovering wing , 2008 .

[44]  Miguel R. Visbal,et al.  Low-Reynolds-Number Aerodynamics of a Flapping Rigid Flat Plate , 2011 .

[45]  J. N. Nielsen,et al.  Theory of Flexible Aerodynamic Surfaces , 1963 .

[46]  R. Dudley The Biomechanics of Insect Flight: Form, Function, Evolution , 1999 .

[47]  Z. Jane Wang,et al.  Analysis of transitions between fluttering, tumbling and steady descent of falling cards , 2005, Journal of Fluid Mechanics.

[48]  Dragos Viieru,et al.  Effects of Reynolds Number and Flapping Kinematics on Hovering Aerodynamics , 2007 .

[49]  Franz S. Hover,et al.  Review of Hydrodynamic Scaling Laws in Aquatic Locomotion and Fishlike Swimming , 2005 .

[50]  M. Selig Summary of low speed airfoil data , 1995 .

[51]  D. J. S. Newman,et al.  Whitefly have the highest contraction frequencies yet recorded in non-fibrillar flight muscles , 1979, Nature.

[52]  M. Dickinson,et al.  Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing , 2006 .

[53]  R.A.W.M. Henkes,et al.  Transitional Boundary Layers in Aeronautics , 1996 .

[54]  M. Koochesfahani Vortical patterns in the wake of an oscillating airfoil , 1987 .

[55]  B. Remes,et al.  Design, Aerodynamics, and Vision-Based Control of the DelFly , 2009 .

[56]  Max F. Platzer,et al.  Characteristics of a Plunging Airfoil at Zero Freestream Velocity , 2001 .

[57]  C. Ellington,et al.  The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmoth , 1997 .

[58]  T. Herbert PARABOLIZED STABILITY EQUATIONS , 1994 .

[59]  James F. Campbell Augmentation of Vortex Lift by Spanwise Blowing , 1975 .

[60]  R. Liebe Flow phenomena in nature , 2007 .

[61]  C. Ellington The Aerodynamics of Hovering Insect Flight. IV. Aeorodynamic Mechanisms , 1984 .

[62]  W. Buddenbrock Der Flug der Insekten , .

[63]  J. McGahan Flapping flight of the Andean condor in nature. , 1973, The Journal of experimental biology.

[64]  D. Wilcox Simulation of Transition with a Two-Equation Turbulence Model , 1994 .

[65]  T. Weis-Fogh Quick estimates of flight fitness in hovering animals , 1973 .

[66]  Yongsheng Lian,et al.  Membrane Wing Model for Micro Air Vehicles , 2003 .

[67]  A. Biewener,et al.  Comparative power curves in bird flight , 2003, Nature.

[68]  T. Daniel,et al.  The Journal of Experimental Biology 206, 2989-2997 © 2003 The Company of Biologists Ltd , 2003 .

[69]  Weiping Zhang,et al.  Modeling and simulation study of an insect-like flapping-wing micro aerial vehicle , 2006, Adv. Robotics.

[70]  Ramiro Godoy-Diana,et al.  How wing compliance drives the efficiency of self-propelled flapping flyers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Dario Floreano,et al.  Flying Insects and Robots , 2010 .

[72]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[73]  Dae-Kwan Kim,et al.  Longitudinal Flight Dynamics of Bioinspired Ornithopter Considering Fluid-Structure Interaction , 2011 .

[74]  R. Zbikowski,et al.  Insectlike Flapping Wings in the Hover Part I: Effect of Wing Kinematics , 2008 .

[75]  Michael S. Triantafyllou,et al.  Active vorticity control in a shear flow using a flapping foil , 1994, Journal of Fluid Mechanics.

[76]  C. Pennycuick,et al.  Newton rules biology. A physical approach to biological problems , 1992 .

[77]  Christopher T. Orlowski,et al.  Dynamics, stability, and control analyses of flapping wing micro-air vehicles , 2012 .

[78]  C. Ellington,et al.  The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. , 1997, The Journal of experimental biology.

[79]  Kai Schneider,et al.  Two- and three-dimensional numerical simulations of the clap–fling–sweep of hovering insects , 2010 .

[80]  Sam Heathcote,et al.  Flexible flapping airfoil propulsion at low Reynolds numbers , 2005 .

[81]  Thomas J. Mueller,et al.  Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics , 1985 .

[82]  M. Osborne Aerodynamics of flapping flight with application to insects. , 1951, The Journal of experimental biology.

[83]  J. Steelant,et al.  Coupled solution of the steady compressible Navier-Stokes equations and the k -e turbulence equations with a multigrid method , 1997 .

[84]  J. D. Delaurier,et al.  An aerodynamic model for flapping-wing flight , 1993, The Aeronautical Journal (1968).

[85]  Christian B Allen,et al.  48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition , 2010 .

[86]  Hui Hu,et al.  An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications , 2010 .

[87]  Wei Shyy,et al.  Near wake vortex dynamics of a hovering hawkmoth , 2009 .

[88]  A. R. Ennos INERTIAL AND AERODYNAMIC TORQUES ON THE WINGS OF DIPTERA IN FLIGHT , 1989 .

[89]  M. Gharib,et al.  A universal time scale for vortex ring formation , 1998, Journal of Fluid Mechanics.

[90]  J. E. Adkins,et al.  Large Elastic Deformations , 1971 .

[91]  Bernd Krauskopf,et al.  Sensitivity of the Generic Transport Model upset dynamics to time delay , 2014 .

[92]  Anders Hedenström,et al.  PIV-based investigations of animal flight , 2009 .

[93]  J. Brackenbury Wing movements in the bush‐cricket Tettigonia viridissima and the mantis Ameles spallanziana during natural leaping , 1990 .

[94]  S. Leibovich THE STRUCTURE OF VORTEX BREAKDOWN , 1978 .

[95]  R J Bomphrey,et al.  Insects in flight: direct visualization and flow measurements , 2006, Bioinspiration & biomimetics.

[96]  Colin J Pennycuick,et al.  THE MECHANICS OF BIRD MIGRATION , 2008 .

[97]  Ying Wang,et al.  Flapping motion measurement of honeybee bilateral wings using four virtual structured-light sensors , 2008 .

[98]  M. Lighthill Hydromechanics of Aquatic Animal Propulsion , 1969 .

[99]  P. Jackson,et al.  NUMERICAL ANALYSIS OF THREE-DIMENSIONAL ELASTIC MEMBRANE WINGS , 1987 .

[100]  U. Norberg Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution , 1990 .

[101]  A. Kesel Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils. , 2000, The Journal of experimental biology.

[102]  Bret Stanford,et al.  Aerodynamic Coefficients and Deformation Measurements on Flexible Micro Air Vehicle Wings , 2007 .

[103]  W. J. McCroskey,et al.  Detailed aerodynamic measurements on a model rotor in the blade stall regime , 1971 .

[104]  Nicholas A J Lieven,et al.  35th AIAA Fluid Dynamics Conference and Exhibit , 2005 .

[105]  C. H. Greenewalt Dimensional relationships for flying animals , 1962 .

[106]  Andrew R Harvey,et al.  High-speed photogrammetry system for measuring the kinematics of insect wings. , 2006, Applied optics.

[107]  Mao Sun,et al.  Dynamic flight stability of a hovering model insect: lateral motion , 2010 .

[108]  W. B. Roberts Calculation of Laminar Separation Bubbles and Their Effect on Airfoil Performance , 1979 .

[109]  J. Usherwood,et al.  The aerodynamics of revolving wings I. Model hawkmoth wings. , 2002, The Journal of experimental biology.

[110]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[111]  K. Breuer,et al.  Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis , 2010, Journal of Experimental Biology.

[112]  B. Balachandran,et al.  Influence of flexibility on the aerodynamic performance of a hovering wing , 2009, Journal of Experimental Biology.

[113]  Sadatoshi Taneda,et al.  Visual study of unsteady separated flows around bodies , 1976 .

[114]  Wenyuan Chen,et al.  Numerical simulation of flapping‐wing insect hovering flight at unsteady flow , 2007 .

[115]  Graham K. Taylor,et al.  Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair , 2009 .

[116]  Neil Bose,et al.  Propulsive performance from oscillating propulsors with spanwise flexibility , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[117]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[118]  Hao Liu,et al.  Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices , 2007 .

[119]  Richard Shepherd Shevell,et al.  Fundamentals of Flight , 1983 .

[120]  Kevin Knowles,et al.  Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 2: Implementation and validation , 2006 .

[121]  Dragos Viieru,et al.  Membrane Wing-Based Micro Air Vehicles , 2005 .

[122]  T. Y. Wu,et al.  Hydromechanics of Swimming of Fishes and Cetaceans , 1971 .

[123]  M. Dickinson,et al.  Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers , 2004, Journal of Experimental Biology.

[124]  Christopher Jenkins,et al.  Nonlinear Dynamic Response of Membranes: State of the Art - Update , 1996 .

[125]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[126]  Holger Babinsky,et al.  Unsteady Lift Generation on Rotating Wings at Low Reynolds Numbers , 2010 .

[127]  Andrei K. Brodsky The Evolution of Insect Flight , 1997 .

[128]  N. A. Thyson,et al.  Extension of Emmons' spot theory to flows on blunt bodies , 1971 .

[129]  P. Jackson A Simple Model for Elastic Two-Dimensional Sails , 1983 .

[130]  Jeff D. Eldredge,et al.  Numerical and experimental study of the fluid dynamics of a flapping wing with low order flexibility , 2008 .

[131]  Tyson L Hedrick,et al.  Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems , 2008, Bioinspiration & biomimetics.

[132]  K. Zimmer,et al.  Der Schwirrflug des Kolibri im Zeitlupenfilm , 2005, Journal für Ornithologie.

[133]  Wei Shyy,et al.  Can Tip Vortices Enhance Lift of a Flapping Wing , 2009 .

[134]  Toshiyuki Nakata,et al.  Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach , 2012, Proceedings of the Royal Society B: Biological Sciences.

[135]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[136]  Jen-San Chen,et al.  On the natural frequencies and mode shapes of dragonfly wings , 2008 .

[137]  Wei Shyy,et al.  Flapping and flexible wings for biological and micro air vehicles , 1999 .

[138]  E. Barta Motion of slender bodies in unsteady Stokes flow , 2011, Journal of Fluid Mechanics.

[139]  P. Chai,et al.  Flight and size constraints: hovering performance of large hummingbirds under maximal loading. , 1997, The Journal of experimental biology.

[140]  W. Mccroskey,et al.  Dynamic Stall Experiments on Oscillating Airfoils , 1975 .

[141]  Haibo Dong,et al.  A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight , 2008, Bioinspiration & biomimetics.

[142]  Michael J. C. Smith,et al.  Simulating moth wing aerodynamics - Towards the development of flapping-wing technology , 1996 .

[143]  M. Dickinson,et al.  The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. , 2002, The Journal of experimental biology.

[144]  S. Michelin,et al.  Resonance and propulsion performance of a heaving flexible wing , 2009, 0906.2804.

[145]  C. Ellington THE AERODYNAMICS OF HOVERING INSECT FLIGHT. V. A VORTEX THEORY , 1984 .

[146]  R. H. Brown,et al.  THE FLIGHT OF BIRDS , 1963 .

[147]  T. Weis-Fogh Energetics of Hovering Flight in Hummingbirds and in Drosophila , 1972 .

[148]  Mao Sun,et al.  A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight , 2005, Journal of Experimental Biology.

[149]  I. Tani Low-speed flows involving bubble separations , 1964 .

[150]  T. Kármán General aerodynamic theory. Perfect fluids , 1963 .

[151]  Rolf Radespiel,et al.  Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils , 2009, Journal of Fluid Mechanics.

[152]  R Dudley,et al.  Limits to vertical force and power production in bumblebees (Hymenoptera: Bombus impatiens) , 2010, Journal of Experimental Biology.

[153]  Mao Sun,et al.  Dynamic flight stability of hovering insects , 2007 .

[154]  Masaki Hamamoto,et al.  Application of fluid–structure interaction analysis to flapping flight of insects with deformable wings , 2007, Adv. Robotics.

[155]  R. E. Mayle,et al.  The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines , 1991 .

[156]  L. J. Pohlen,et al.  The influence of free-stream disturbances on low Reynolds number airfoil experiments , 1983 .

[157]  D. Grodnitsky,et al.  Form and Function of Insect Wings: The Evolution of Biological Structures , 1999 .

[158]  D. Janzen,et al.  Stable structural color patterns displayed on transparent insect wings , 2011, Proceedings of the National Academy of Sciences.

[159]  J A Walker,et al.  Mechanical performance of aquatic rowing and flying , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[160]  William Graebel,et al.  Advanced Fluid Mechanics , 2007 .

[161]  M. Triantafyllou,et al.  Oscillating foils of high propulsive efficiency , 1998, Journal of Fluid Mechanics.

[162]  Yuan Lu,et al.  Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing , 2008, Journal of Experimental Biology.

[163]  Mao Sun,et al.  Effects of unsteady deformation of flapping wing on its aerodynamic forces , 2008 .

[164]  Wei Shyy,et al.  Shallow and deep dynamic stall for flapping low Reynolds number airfoils , 2009 .

[165]  Mao Sun,et al.  Wing Kinematics Measurement and Aerodynamic Force and Moments Computation of Hovering Hoverfly , 2007, 2007 1st International Conference on Bioinformatics and Biomedical Engineering.

[166]  Sanjay P Sane,et al.  The aerodynamics of insect flight , 2003, Journal of Experimental Biology.

[167]  D. Weihs,et al.  Comb Wings for Flapping Flight at Extremely Low Reynolds Numbers , 2008 .

[168]  C. Shao,et al.  Wind induced deformation and vibration of a Platanus acerifolia leaf , 2012 .

[169]  John Valasek,et al.  Morphing Aerospace Vehicles and Structures , 2012 .

[170]  M H Dickinson,et al.  Leading-Edge Vortices Elevate Lift of Autorotating Plant Seeds , 2009, Science.

[171]  Andrew M. Mountcastle,et al.  Aerodynamic and functional consequences of wing compliance , 2010 .

[172]  Fei-Bin Hsiao,et al.  Influence of surface flow on aerodynamic loads of a cantilever wing , 1996 .

[173]  D. Ishihara,et al.  A two-dimensional computational study on the fluid–structure interaction cause of wing pitch changes in dipteran flapping flight , 2009, Journal of Experimental Biology.

[174]  J. F. Unruh,et al.  Correlation of lift and boundary-layer activity on an oscillating lifting surface , 1982 .

[175]  C. Peskin,et al.  A computational fluid dynamics of `clap and fling' in the smallest insects , 2005, Journal of Experimental Biology.

[176]  S. Vogel Flight in Drosophila : I. Flight Performance of Tethered Flies , 1966 .

[177]  Ulla M. Norberg,et al.  Moments of Inertia of Bat Wings and Body , 1991 .

[178]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part I-system modeling , 2006, IEEE Transactions on Robotics.

[179]  Pennycuick Wingbeat frequency of birds in steady cruising flight: new data and improved predictions , 1996, The Journal of experimental biology.

[180]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[181]  Chunyong Yin,et al.  Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies , 2003, Journal of Experimental Biology.

[182]  Carlos E. S. Cesnik,et al.  Flapping-Wing Structural Dynamics Formulation Based on a Corotational Shell Finite Element , 2011 .

[183]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[184]  I. Faruque,et al.  Dipteran insect flight dynamics. Part 2: Lateral-directional motion about hover. , 2010, Journal of theoretical biology.

[185]  J. Rayner A vortex theory of animal flight. Part 2. The forward flight of birds , 1979, Journal of Fluid Mechanics.

[186]  R. M. Alexander The U, J and L of bird flight , 1997, Nature.

[187]  Henk Tennekes,et al.  The Simple Science of Flight , 1996 .

[188]  Lijiang Zeng,et al.  Measuring the kinematics of a free-flying hawk-moth (Macroglossum stellatarum) by a comb-fringe projection method , 2010 .

[189]  Gordon J. Berman,et al.  Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects , 2009, Journal of Experimental Biology.

[190]  Lijiang Zeng,et al.  A scanning projected line method for measuring a beating bumblebee wing , 2000 .

[191]  Jun Zhang,et al.  Symmetry breaking leads to forward flapping flight , 2004, Journal of Fluid Mechanics.

[192]  Hugh A. Bruck,et al.  Measurement of Thrust and Lift Forces Associated With Drag of Compliant Flapping Wing for Micro Air Vehicles Using a New Test Stand Design , 2010 .

[193]  C. J. Pennycuick,et al.  Modelling the Flying Bird , 2008 .

[194]  M. Triantafyllou,et al.  Hydrodynamics of Fishlike Swimming , 2000 .

[195]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part II-flight control design , 2006, IEEE Transactions on Robotics.

[196]  T. Maxworthy Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’ , 1979, Journal of Fluid Mechanics.

[197]  Danesh K. Tafti,et al.  Effect of Frontal Gusts on Forward Flapping Flight , 2010 .

[198]  Jun Zhang,et al.  On unidirectional flight of a free flapping wing , 2006 .

[199]  M. Yaras,et al.  Effects of Surface-Roughness Geometry on Separation-Bubble Transition , 2006 .

[200]  B. Tobalske,et al.  Aerodynamics of the hovering hummingbird , 2005, Nature.

[201]  Richard J. Bomphrey,et al.  Advances in Animal Flight Aerodynamics Through Flow Measurement , 2011, Evolutionary Biology.

[202]  Thomas L Daniel,et al.  Flexible Wings and Fins: Bending by Inertial or Fluid-Dynamic Forces?1 , 2002, Integrative and comparative biology.

[203]  Kenneth Breuer,et al.  Aeromechanics of Membrane Wings with Implications for Animal Flight ArnoldSong, ∗ XiaodongTian, † EmilyIsraeli, ‡ RicardoGalvao, § KristinBishop, ¶ SharonSwartz, ∗∗ , 2008 .

[204]  M. Dickinson,et al.  UNSTEADY AERODYNAMIC PERFORMANCE OF MODEL WINGS AT LOW REYNOLDS NUMBERS , 1993 .

[205]  J. Grace,et al.  Biophysical Aerodynamics and the Natural Environment. , 1984 .

[206]  Norman M. Wereley,et al.  Time-Periodic Stability of a Flapping Insect Wing Structure in Hover , 2009 .

[207]  J.-M. Miao,et al.  Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil , 2006 .

[208]  Herbert Wagner Über die Entstehung des dynamischen Auftriebes von Tragflügeln , 1925 .

[209]  V. F Pleshakov,et al.  Anisotropic vector functions of vector argument , 1967 .

[210]  John David Anderson Inventing Flight: The Wright Brothers and Their Predecessors , 2004 .

[211]  Wei Shyy,et al.  Membrane wing aerodynamics for micro air vehicles , 2003 .

[212]  Ramiro Godoy-Diana,et al.  Behind the performance of flapping flyers , 2010 .

[213]  H. C. Curtiss,et al.  Aerodynamic properties of a two-dimensional inextensible flexible airfoil , 1984 .

[214]  E. L. Houghton,et al.  Aerodynamics for Engineering Students , 1970 .

[215]  Sandra Nauwelaerts,et al.  Propulsive force calculations in swimming frogs II. Application of a vortex ring model to DPIV data , 2005, Journal of Experimental Biology.

[216]  W. Shyy,et al.  Aerodynamics of Low Reynolds Number Flyers , 2007 .

[217]  John David Anderson,et al.  Introduction to Flight , 1985 .

[218]  Carlos E. S. Cesnik,et al.  Effects of flexibility on the aerodynamic performance of flapping wings , 2011, Journal of Fluid Mechanics.

[219]  Peter J. Attar,et al.  Experimental Characterization of Limit Cycle Oscillations in Membrane Wing Micro Air Vehicles , 2010 .

[220]  Marcel Escudier,et al.  Vortex breakdown: Observations and explanations , 1988 .

[221]  Yu-Hung Chang,et al.  An unconventional mechanism of lift production during the downstroke in a hovering bird (Zosterops japonicus) , 2011 .

[222]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[223]  Peter Ifju,et al.  Flapping Wing Structural Deformation and Thrust Correlation Study with Flexible Membrane Wings , 2010 .

[224]  A. R. Wazzan,et al.  Tollmien-Schlichting waves and transition: Heated and Adiabatic Wedge Flows with Application to Bodies of Revolution☆ , 1979 .

[225]  S. Ting,et al.  Pitching stabilization via caudal fin-wave propagation in a forward-sinking parrot cichlid (Cichlasoma citrinellum × Cichlasoma synspilum) , 2008, Journal of Experimental Biology.

[226]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[227]  B. Thwaites,et al.  The aerodynamic theory of sails. I. Two-dimensional sails , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[228]  Haoxiang Luo,et al.  Effect of wing inertia on hovering performance of flexible flapping wings , 2010 .

[229]  U. Gulcat,et al.  Propulsive Force of a Flexible Flapping Thin Airfoil , 2009 .

[230]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[231]  T Nakata,et al.  Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle , 2011, Bioinspiration & biomimetics.

[232]  G. De Matteis,et al.  Nonlinear Aerodynamics of a Two-Dimensional Membrane Airfoil with Separation , 1986 .

[233]  D. Pines,et al.  Challenges Facing Future Micro-Air-Vehicle Development , 2006 .

[234]  Geoffrey Spedding,et al.  The Aerodynamics of Flight , 1992 .

[235]  D. E. Metzger,et al.  Computer-based areal surface temperature and local heat transfer measurements with thermochromic liquid crystals (TLC) , 1992 .

[236]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[237]  A. Alexeev,et al.  Resonance of flexible flapping wings at low Reynolds number. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[238]  Ellington,et al.  A computational fluid dynamic study of hawkmoth hovering , 1998, The Journal of experimental biology.

[239]  M. Gharib,et al.  Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates , 2007, Journal of Fluid Mechanics.

[240]  Geoffrey Spedding,et al.  The wake of a jackdaw (Corvus monedula) in slow flight , 1986 .

[241]  A. D. Sneyd,et al.  Aerodynamic coefficients and longitudinal stability of sail aerofoils , 1984, Journal of Fluid Mechanics.

[242]  C. Ellington The Aerodynamics of Hovering Insect Flight. III. Kinematics , 1984 .

[243]  Yuan-Cheng Fung,et al.  An introduction to the theory of aeroelasticity , 1955 .

[244]  Lijiang Zeng,et al.  Measuring the body vector of a free flight bumblebee by the reflection beam method , 2001 .

[245]  S. Swartz Allometric patterning in the limb skeleton of bats: Implications for the mechanics and energetics of powered flight , 1997, Journal of morphology.

[246]  P. Sagaut,et al.  Large Eddy Simulation of Flow Around an Airfoil Near Stall , 2002 .

[247]  R. H. Buckholz,et al.  The Functional Role of Wing Corrugations in Living Systems , 1986 .

[248]  T. Mueller,et al.  AERODYNAMICS OF SMALL VEHICLES , 2003 .

[249]  Akira Azuma,et al.  The Biokinetics of Flying and Swimming , 1992 .

[250]  Imraan A. Faruque,et al.  Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover. , 2010, Journal of theoretical biology.

[251]  Dominique Poirel,et al.  Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers , 2008 .

[252]  Moe W. Rosen Water flow about a swimming fish , 1959 .

[253]  Lijiang Zeng,et al.  Measuring the camber deformation of a dragonfly wing using projected comb fringe , 2001 .

[254]  R. Dudley,et al.  Mechanics of Forward Flight in Bumblebees: II. QUASI-STEADY LIFT AND POWER REQUIREMENTS , 1990 .

[255]  K. Kawachi,et al.  A Numerical Study of Insect Flight , 1998 .

[256]  B. G. Newman,et al.  Two-dimensional impervious sails: experimental results compared with theory , 1984, Journal of Fluid Mechanics.

[257]  P. S. Baker,et al.  Weis-Fogh clap and fling mechanism in Locusta , 1977, Nature.

[258]  N. J. Cherry,et al.  The effects of stream turbulence on separation bubbles , 1981 .

[259]  Sunil Kumar Agrawal,et al.  Design of Bio-inspired Flexible Wings for Flapping-Wing Micro-sized Air Vehicle Applications , 2009, Adv. Robotics.

[260]  Jae-Hung Han,et al.  Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators , 2009 .

[261]  Wei Shyy,et al.  Computational aeroelasticity framework for analyzing flapping wing micro air vehicles , 2008 .

[262]  Z. Jane Wang,et al.  DISSECTING INSECT FLIGHT , 2005 .

[263]  D. Weihs,et al.  A hydrodynamical analysis of fish turning manoeuvres , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[264]  Z. J. Wang,et al.  Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation. , 2004, Physical review letters.

[265]  Hao Liu,et al.  Near- and far-field aerodynamics in insect hovering flight: an integrated computational study , 2008, Journal of Experimental Biology.

[266]  Max F. Platzer,et al.  Design and development considerations for biologically inspired flapping-wing micro air vehicles , 2009 .

[267]  R. Dudley,et al.  Limits to flight energetics of hummingbirds hovering in hypodense and hypoxic gas mixtures. , 1996, The Journal of experimental biology.

[268]  Raymond E. Gordnier,et al.  High fidelity computational simulation of a membrane wing airfoil , 2008 .

[269]  Yongsheng Lian,et al.  Three-Dimensional Fluid-Structure Interactions of a Membrane Wing for Micro Air Vehicle Applications , 2003 .

[270]  Aerodynamic trick for visual stabilization during downstroke in a hovering bird. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[271]  Miguel R. Visbal,et al.  Numerical Investigation of Deep Dynamic Stall of a Plunging Airfoil , 2010 .

[272]  Hossein Haj-Hariri,et al.  Numerical Analysis of a Heaving flexible Airfoil in a Viscous Flow , 2006 .

[273]  R. H. Brown The Flight of Birds: II. Wing Function in Relation to Flight Speed , 1953 .

[274]  Fei-Bin Hsiao,et al.  Aerodynamic performance and flow structure studies of a low Reynoldsnumber airfoil , 1989 .

[275]  J. Murray,et al.  Scale Effects in Animal Locomotion. , 1978 .

[276]  Carlos E. S. Cesnik,et al.  Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications , 2008 .

[277]  O. Tietjens,et al.  Fundamentals of hydro- and aeromechanics , 1934 .

[278]  T. Daniel,et al.  Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta , 2003, Journal of Experimental Biology.

[279]  Alain Farcy,et al.  Time-resolved scanning tomography PIV measurements around a flapping wing , 2012 .

[280]  Sanford S. Davis,et al.  Experimental Studies of Unsteady Trailing-Edge Conditions , 1978 .

[281]  M. Dickinson,et al.  Spanwise flow and the attachment of the leading-edge vortex on insect wings , 2001, Nature.

[282]  R. McNeill Alexander,et al.  Mechanics and energetics of animal locomotion , 1977 .

[283]  R. B. Srygley,et al.  Unconventional lift-generating mechanisms in free-flying butterflies , 2002, Nature.

[284]  Jmv Rayner,et al.  Momentum and energy in the wake of a pigeon (Columba livia) in slow flight , 1984 .

[285]  C. M. Dohring,et al.  Experimental and Computational Investigation of the Knoller-Betz Effect , 1998 .

[286]  Joseph C. S. Lai,et al.  Reynolds number, thickness and camber effects on flapping airfoil propulsion , 2011 .

[287]  Per-Olof Persson,et al.  Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a Discontinuous Galerkin method , 2011 .

[288]  J. Marden Maximum Lift Production During Takeoff in Flying Animals , 1987 .

[289]  J. Ko,et al.  Effects of corrugation of the dragonfly wing on gliding performance. , 2009, Journal of theoretical biology.

[290]  S. N. Fry,et al.  The aerodynamics of hovering flight in Drosophila , 2005, Journal of Experimental Biology.

[291]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[292]  Shinichi Hirai,et al.  Robust real time material classification algorithm using soft three axis tactile sensor: Evaluation of the algorithm , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[293]  Mao Sun,et al.  Wing kinematics measurement and aerodynamics of hovering droneflies , 2008, Journal of Experimental Biology.

[294]  Colin J Pennycuick,et al.  Predicting Wingbeat Frequency and Wavelength of Birds , 1990 .

[295]  Wei Shyy,et al.  Numerical Simulations of Membrane Wing Aerodynamics for Micro Air Vehicle Applications , 2005 .

[296]  Ll. G. Chambers,et al.  A VARIATIONAL FORMULATION OF THE THWAITES SAIL EQUATION , 1966 .

[297]  T. Mueller,et al.  Laminar separation bubble characteristics on an airfoil at low Reynolds numbers , 1987 .

[298]  Per-Olof Persson,et al.  Numerical simulation of flapping wings using a panel method and a high‐order Navier–Stokes solver , 2012 .

[299]  Z. J. Wang,et al.  Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments , 2004, Journal of Experimental Biology.

[300]  M. Dickinson,et al.  The aerodynamic effects of wing–wing interaction in flapping insect wings , 2005, Journal of Experimental Biology.

[301]  Hao Liu,et al.  Recent progress in flapping wing aerodynamics and aeroelasticity , 2010 .

[302]  C. Peskin,et al.  Flexible clap and fling in tiny insect flight , 2009, Journal of Experimental Biology.

[303]  J. Rayner A New Approach to Animal Flight Mechanics , 1979 .

[304]  T. Tavares,et al.  Aerodynamics of maneuvering slender wings with leading-edge separation , 1993 .

[305]  Qiang Zhu,et al.  Numerical Simulation of a Flapping Foil with Chordwise or Spanwise Flexibility , 2007 .

[306]  J. P. Whitney,et al.  Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. , 2011, Integrative and comparative biology.

[307]  Azuma,et al.  Aerodynamic characteristics of the wings and body of a dragonfly , 1996, The Journal of experimental biology.

[308]  S. Sunada,et al.  Approximate Added-Mass Method for Estimating Induced Power for Flapping Flight , 2000 .

[309]  G D E Povel,et al.  Leading-Edge Vortex Lifts Swifts , 2004, Science.

[310]  Bret W. Tobalske,et al.  Aerodynamics of intermittent bounds in flying birds , 2009 .

[311]  Michael Dickinson Le vol des insectes , 2001 .

[312]  Adrian L. R. Thomas,et al.  Deformable wing kinematics in free-flying hoverflies , 2010, Journal of The Royal Society Interface.

[313]  C. Ellington,et al.  The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. , 1997, The Journal of experimental biology.

[314]  Z. J. Wang Nature’s Flyers: Birds, Insects, and the Biomechanics of Flight , 2007 .

[315]  Morteza Gharib,et al.  Experimental study of three-dimensional vortex structures in translating and rotating plates , 2010 .

[316]  J. Wakeling,et al.  Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. , 1997, The Journal of experimental biology.

[317]  T. Y. Wu Fish Swimming and Bird/Insect Flight , 2011 .

[318]  R. R. Pruyn,et al.  Blade Stall—Half Fact, Half Fiction , 1968 .

[319]  D. Wilcox Turbulence modeling for CFD , 1993 .

[320]  T. Kármán,et al.  Airfoil Theory for Non-Uniform Motion , 1938 .

[321]  K. Götz,et al.  The Wing Beat of Drosophila Melanogaster. II. Dynamics , 1990 .

[322]  K. Streitlien,et al.  On Thrust Estimates for Flapping Foils , 1998 .

[323]  Feng Liu,et al.  Turbulent transition simulation using thek-ω model , 1998 .

[324]  K. Breuer,et al.  The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production , 2010, Journal of Experimental Biology.

[325]  Peter J. Attar,et al.  Aeroelastic Analysis of Membrane Microair Vehicles—Part II: Computational Study of a Plunging Membrane Airfoil , 2011 .

[326]  Adrian L. R. Thomas,et al.  Dynamic flight stability in the desert locust Schistocerca gregaria , 2003, Journal of Experimental Biology.

[327]  S. Kirkpatrick Scale effects on the stresses and safety factors in the wing bones of birds and bats. , 1994, Journal of Experimental Biology.

[328]  T. Daniel,et al.  The Journal of Experimental Biology 206, 2979-2987 © 2003 The Company of Biologists Ltd , 2022 .

[329]  R. Radespiel,et al.  Numerical and Experimental Flow Analysis of Moving Airfoils with Laminar Separation Bubbles , 2006 .

[330]  Jun Zhang,et al.  Flapping and Bending Bodies Interacting with Fluid Flows , 2011 .

[331]  John Young,et al.  Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil , 2004 .

[332]  C. Pennycuick,et al.  Wingbeat frequency and the body drag anomaly: wind-tunnel observations on a thrush nightingale (Luscinia luscinia) and a teal (Anas crecca) , 1996, The Journal of experimental biology.

[333]  A. Hedenström,et al.  Bat Flight Generates Complex Aerodynamic Tracks , 2007, Science.

[334]  Mark V. Morkovin,et al.  Application of a quasi-steady stability model to periodic boundary-layer flows. , 1969 .

[335]  E. Polhamus Predictions of vortex-lift characteristics based on a leading-edge suction analogy. , 1971 .

[336]  Peretz P. Friedmann,et al.  Renaissance of Aeroelasticity and Its Future , 1999 .

[337]  Eli Livne,et al.  Future of Airplane Aeroelasticity , 2003 .

[338]  M. Maughmer,et al.  Multipoint inverse airfoil design method based on conformal mapping , 1991 .

[339]  R. Zbikowski On aerodynamic modelling of an insect–like flapping wing in hover for micro air vehicles , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[340]  G. He,et al.  Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil , 2009 .

[341]  John Young,et al.  Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency , 2009, Science.

[342]  Gregg Abate,et al.  An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight , 2010 .

[343]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[344]  H Liu,et al.  Size effects on insect hovering aerodynamics: an integrated computational study , 2009, Bioinspiration & biomimetics.

[345]  Z. J. Wang,et al.  Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. , 2007, Physical review letters.

[346]  M. Dickinson,et al.  The control of flight force by a flapping wing: lift and drag production. , 2001, The Journal of experimental biology.

[347]  O. D. Vries On the Theory of the Horizontal-Axis Wind Turbine , 1983 .

[348]  Peter Freymuth,et al.  Thrust generation by an airfoil in hover modes , 1990 .

[349]  P. Bradshaw,et al.  Modeling of Flow Transition Using an Intermittency Transport Equation , 2000 .

[350]  John O. Dabiri,et al.  Geometry of unsteady fluid transport during fluid–structure interactions , 2007, Journal of Fluid Mechanics.

[351]  Joseph Katz,et al.  Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility , 1978, Journal of Fluid Mechanics.

[352]  Leonard Bridgeman,et al.  Jane's All the World's Aircraft , 1970 .

[353]  I. E. Garrick Propulsion of a flapping and oscillating airfoil , 1936 .

[354]  Miguel R. Visbal,et al.  High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers , 2009 .

[355]  L. Mahadevan,et al.  Fluid-flow-induced flutter of a flag. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[356]  M. Dickinson,et al.  The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight , 2003, Journal of Experimental Biology.

[357]  M. Lighthill On the Weis-Fogh mechanism of lift generation , 1973, Journal of Fluid Mechanics.

[358]  N. D. Ham,et al.  Aerodynamic loading on a two-dimensional airfoil during dynamic stall. , 1968 .

[359]  J. Leishman,et al.  Phase-locked particle image velocimetry measurements of a flapping wing , 2006 .

[360]  Hao Liu,et al.  Integrated modeling of insect flight: From morphology, kinematics to aerodynamics , 2009, J. Comput. Phys..

[361]  Kirill V. Rozhdestvensky,et al.  Aerohydrodynamics of flapping-wing propulsors , 2003 .

[362]  Tianshu Liu,et al.  Comparative Scaling of Flapping- and Fixed-Wing Flyers , 2006 .

[363]  J. Mccune,et al.  Nonlinear aerodynamics of two-dimensional airfoils in severe maneuver , 1988 .

[364]  J. Brackenbury,et al.  Kinematics of take‐off and climbing flight in butterflies , 1991 .

[365]  Toshiyuki Nakata,et al.  A fluid-structure interaction model of insect flight with flexible wings , 2012, J. Comput. Phys..

[366]  Christopher Jenkins,et al.  Nonlinear Dynamic Response of Membranes: State of the Art , 1991 .

[367]  H. Murai,et al.  THEORETICAL INVESTIGATION OF THE AERODYNAMICS OF DOUBLE MEMBRANE SAILWING AIRFOIL SECTIONS , 1980 .

[368]  Sam Heathcote,et al.  Flexible Flapping Airfoil Propulsion at Zero Freestream Velocity , 2003 .

[369]  Holger Babinsky,et al.  Impulsively Started Flat Plate Flow , 2009 .

[370]  Raymond D. Mindlin,et al.  Beam Vibrations With Time-Dependent Boundary Conditions , 1989 .

[371]  Z. J. Wang Two dimensional mechanism for insect hovering , 2000 .

[372]  David R. Carrier,et al.  Wing bone stresses in free flying bats and the evolution of skeletal design for flight , 1992, Nature.

[373]  R. Dudley,et al.  Mechanics of Forward Flight in Bumblebees: I. Kinematics and Morphology , 1990 .

[374]  M. Dickinson,et al.  Rotational accelerations stabilize leading edge vortices on revolving fly wings , 2009, Journal of Experimental Biology.

[375]  F. Noca,et al.  A COMPARISON OF METHODS FOR EVALUATING TIME-DEPENDENT FLUID DYNAMIC FORCES ON BODIES, USING ONLY VELOCITY FIELDS AND THEIR DERIVATIVES , 1999 .

[376]  D. Keith Walters,et al.  Prediction of unsteady, separated boundary layer over a blunt body for laminar, turbulent, and transitional flow , 2004 .

[377]  Sam Heathcote,et al.  Effect of Spanwise Flexibility on Flapping Wing Propulsion , 2006 .

[378]  J.M.R. Graham,et al.  Human flapping-wing flight under reduced gravity , 1994, Aeronautical Journal.

[379]  Junzo Sato,et al.  Aerodynamic characteristics of two-dimensional membrane airfoils. , 1988 .

[380]  A. Hedenström,et al.  Wake structure and wingbeat kinematics of a house-martin Delichon urbica , 2007, Journal of The Royal Society Interface.

[381]  Wei Shyy,et al.  Evaluation of laminar-turbulent transition and equilibrium near wall turbulence models , 2000 .

[382]  F. Lehmann The mechanisms of lift enhancement in insect flight , 2004, Naturwissenschaften.

[383]  A Hedenström,et al.  A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds , 2003, Journal of Experimental Biology.

[384]  Colin J Pennycuick,et al.  Bird flight performance: a practical calculation manual , 1992 .

[385]  Inderjit Chopra,et al.  Insect-Based Hover-Capable Flapping Wings for Micro Air Vehicles: Experiments and Analysis , 2008 .

[386]  Mao Sun,et al.  Dynamic flight stability of a hovering bumblebee , 2005, Journal of Experimental Biology.

[387]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[388]  S. Sane,et al.  Aerodynamic effects of flexibility in flapping wings , 2010, Journal of The Royal Society Interface.

[389]  Shigeru Sunada,et al.  Comparison of wing characteristics at an ultralow Reynolds number , 2002 .

[390]  Joseph Katz,et al.  Unsteady aerodynamic model of flapping wings , 1996 .

[391]  Wei Shyy,et al.  Computational Fluid Dynamics with Moving Boundaries , 1995 .

[392]  C. Ellington Unsteady aerodynamics of insect flight. , 1995, Symposia of the Society for Experimental Biology.

[393]  Dragos Viieru,et al.  Effect of Tip Vortex on Wing Aerodynamics of Micro Air Vehicles , 2004 .

[394]  S. Childress Mechanics of swimming and flying: Frontmatter , 1977 .

[395]  C. Ellington The Aerodynamics of Hovering Insect Flight. II. Morphological Parameters , 1984 .

[396]  Tuncer Cebeci,et al.  Essential ingredients of a method for low Reynolds-number airfoils , 1989 .

[397]  B. G. Newman,et al.  Aerodynamic theory for membranes and sails , 1987 .

[398]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[399]  Jian Chen,et al.  Quantifying the complexity of bat wing kinematics. , 2008, Journal of theoretical biology.

[400]  T. Weis-Fogh,et al.  Biology and physics of locust flight. I. Basic principles in insect flight. A critical review , 1956, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[401]  Z. J. Wang,et al.  Unsteady aerodynamics of fluttering and tumbling plates , 2005, Journal of Fluid Mechanics.

[402]  Chongam Kim,et al.  Aerodynamic Effects of Structural Flexibility in Two-Dimensional Insect Flapping Flight , 2011 .

[403]  W. Shyy,et al.  Study of Adaptive Shape Airfoils at Low Reynolds Number in Oscillatory Flows , 1997 .

[404]  D. Ishihara,et al.  Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing , 2009, Journal of Experimental Biology.

[405]  Ephrahim Garcia,et al.  Stability in Ornithopter Longitudinal Flight Dynamics , 2008 .

[406]  R. Ramamurti,et al.  Simulation of Flow About Flapping Airfoils Using Finite Element Incompressible Flow Solver , 2001 .

[407]  T. Mueller Low Reynolds Number Aerodynamics , 1989 .

[408]  S. Combes,et al.  Turbulence-driven instabilities limit insect flight performance , 2009, Proceedings of the National Academy of Sciences.

[409]  P Wu,et al.  Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings , 2011, Bioinspiration & biomimetics.

[410]  Hirokazu Matsumoto,et al.  A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing , 1996 .

[411]  Mao Sun,et al.  Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. , 2002, The Journal of experimental biology.

[412]  Hester Bijl,et al.  Aerodynamic Experiments on DelFly II: Unsteady Lift Enhancement , 2009 .

[413]  A. Brodsky Vortex Formation in the Tethered Flight of the Peacock Butterfly Inachis io L. (Lepidoptera, Nymphalidae) and some Aspects of Insect Flight Evolution , 1991 .

[414]  P. Shipman Taking Wing: Archaeopteryx and the Evolution of Bird Flight , 1998 .

[415]  Anders Hedenström,et al.  High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel , 2009 .

[416]  Shigeru Sunada,et al.  The Relationship Between Dragonfly Wing Structure and Torsional Deformation , 1998 .

[417]  U. M. Norberg,et al.  Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus. , 1976, The Journal of experimental biology.

[418]  K. Breuer,et al.  Direct measurements of the kinematics and dynamics of bat flight , 2006, Bioinspiration & biomimetics.

[419]  Adrian L. R. Thomas,et al.  Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency , 2003, Nature.

[420]  S. P. Roberts,et al.  Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[421]  H. J. Obremski,et al.  Transition in oscillating boundary layer flows , 1967, Journal of Fluid Mechanics.

[422]  Hui Hu,et al.  Flexible-Membrane Airfoils at Low Reynolds Numbers , 2008 .

[423]  Tang Jian,et al.  Numerical and experimental study of flow structure of low-aspect-ratio wing , 2004 .

[424]  Hansheng Pan,et al.  Wake patterns of the wings and tail of hovering hummingbirds , 2009 .

[425]  Christian B Allen,et al.  12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference , 2008 .

[426]  Adrian L. R. Thomas,et al.  FLOW VISUALIZATION AND UNSTEADY AERODYNAMICS IN THE FLIGHT OF THE HAWKMOTH, MANDUCA SEXTA , 1997 .

[427]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[428]  C. J. Clark,et al.  Three-dimensional kinematics of hummingbird flight , 2007, Journal of Experimental Biology.

[429]  T L Daniel,et al.  Vortexlet models of flapping flexible wings show tuning for force production and control , 2010, Bioinspiration & biomimetics.

[430]  Z. J. Wang Aerodynamic efficiency of flapping flight: analysis of a two-stroke model , 2008, Journal of Experimental Biology.

[431]  Thomas J. Mueller,et al.  Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications , 2001 .

[432]  Jean-Marc Vanden-Broeck,et al.  Nonlinear two‐dimensional sail theory , 1982 .

[433]  Tobalske,et al.  Flight kinematics of black-billed magpies and pigeons over a wide range of speeds , 1996, The Journal of experimental biology.

[434]  F. White Viscous Fluid Flow , 1974 .

[435]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[436]  J. Wakeling,et al.  Dragonfly flight. III. Lift and power requirements. , 1997, The Journal of experimental biology.

[437]  C. Ellington The Aerodynamics of Hovering Insect Flight. VI. Lift and Power Requirements , 1984 .

[438]  Werner Haase,et al.  Feasibility Study of e Transition Prediction in Navier-Stokes Methods for Airfoils , 1999 .

[439]  S. Dalton The miracle of flight , 1977 .

[440]  P. Wilkin,et al.  Comparison of the Aerodynamic Forces on a Flying Sphingid Moth with Those Predicted by Quasi-Steady Theory , 1993, Physiological Zoology.

[441]  Hirohisa Morikawa,et al.  Bio-mechanisms of Swimming and Flying , 2004, Springer Japan.