Numerical Methods for Control and Optimization

One of the main techniques presented in Chapters 7 and 8 is to reduce the complexity of singularly perturbed systems by studying the corresponding limit systems that are easier to handle than the original problems. The optimal or nearly optimal controls of the limit problems can be used to construct nearly optimal controls of the original systems. Although the limit systems are substantially simpler than the original pre-limit ones, very often closed-form solutions are still difficult to obtain, except in special cases. For example, in the context of stochastic manufacturing systems, a closed-form solution for optimal production planning is obtained for a system with one-machine and one-part-type by Akella and Kumar [2] for a discounted cost problem, and Zhang and Yin [251] for a finite horizon counterpart. Such closed-form solutions do not seem possible for more general manufacturing systems such as flowshops and jobshops (see Sethi and Zhang [192]). For many applications, one has to resort to a viable alternative – numerical methods.

[1]  V. G. Gaitsgori,et al.  Aggregation of states in a Markov chain with weak interaction , 1975 .

[2]  J. Warga Relaxed variational problems , 1962 .

[3]  E. Roxin The existence of optimal controls. , 1962 .

[4]  H. Kushner Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems , 1990 .

[5]  G. Yin,et al.  Discrete-Time Markov Chains: Two-Time-Scale Methods and Applications , 2004 .

[6]  Donald R. Smith Singular-perturbation theory , 1985 .

[7]  Q. Zhang Nonlinear Filtering and Control of a Switching Diffusion with Small Observation Noise , 1998 .

[8]  Gilad Lerman,et al.  Asymptotic Theory of Large Deviations for Markov Chains , 1998, SIAM J. Appl. Math..

[9]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[10]  W. Fleming Functions of Several Variables , 1965 .

[11]  P. Kokotovic,et al.  A singular perturbation approach to modeling and control of Markov chains , 1981 .

[12]  G. Yin,et al.  Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach , 1997 .

[13]  Petr Jirku Towards an integrated theory of formal and natural languages , 1975, Kybernetika.

[14]  M. K. Ghosh,et al.  Ergodic Control of Switching Diffusions , 1997 .

[15]  Qing Zhang,et al.  Hierarchical Decision Making in Stochastic Manufacturing Systems , 1994 .

[16]  D. Ludwig Persistence of Dynamical Systems under Random Perturbations , 1975 .

[17]  Ulrich G. Haussmann,et al.  Stochastic adaptive control with small observation noise , 1990 .

[18]  R. Dobrushin Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .

[19]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[20]  D. Verms Optimal control of piecewise deterministic markov process , 1985 .

[21]  H. M. Taylor,et al.  An introduction to stochastic modeling , 1985 .

[22]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[23]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[24]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[25]  Gang George Yin,et al.  Markowitz's Mean-Variance Portfolio Selection with Regime Switching: A Continuous-Time Model , 2003, SIAM J. Control. Optim..

[26]  L. Berkovitz Optimal Control Theory , 1974 .

[27]  C. L. Chiang,et al.  An introduction to stochastic processes and their applications , 1978 .

[28]  H. Chizeck,et al.  Jump Linear Quadratic Gaussian Control in Continuous Time , 1991, 1991 American Control Conference.

[29]  Qing Zhang,et al.  Recent Advances in Control and Optimization of Manufacturing Systems , 1996 .

[30]  Qing Zhang,et al.  Control of Dynamic Systems under the Influence of Singularly Perturbed Markov Chains , 1997 .

[31]  Samuel Karlin,et al.  The classification of birth and death processes , 1957 .

[32]  W. J. Anderson Continuous-Time Markov Chains: An Applications-Oriented Approach , 1991 .

[33]  J. Jiang,et al.  A State Aggregation Approach to Manufacturing Systems Having Machine States with Weak and Strong Interactions , 1991, Oper. Res..

[34]  Qing Zhang,et al.  A numerical method in optimal production and setup scheduling of stochastic manufacturing systems , 1997 .

[35]  E. Altman,et al.  Perturbation analysis for denumerable Markov chains with application to queueing models , 2004, Advances in Applied Probability.

[36]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[37]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[38]  Thomas G. Kurtz,et al.  A limit theorem for perturbed operator semigroups with applications to random evolutions , 1973 .

[39]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[40]  Rafail Z. Khasminskii,et al.  Asymptotic Series for Singularly Perturbed Kolmogorov-Fokker-Planck Equations , 1996, SIAM J. Appl. Math..

[41]  Qing Zhang Risk-Sensitive Production Planning of Stochastic Manufacturing Systems: A Singular Perturbation Approach , 1995 .

[42]  S. Karlin,et al.  The differential equations of birth-and-death processes, and the Stieltjes moment problem , 1957 .

[43]  J. Harrison,et al.  Reflected Brownian Motion on an Orthant , 1981 .

[44]  V. S. Koroli︠u︡k,et al.  Evolution of systems in random media , 1995 .

[45]  Gang George Yin,et al.  Near-optimal controls of random-switching LQ problems with indefinite control weight costs , 2005, Autom..

[46]  Oswaldo Luiz do Valle Costa,et al.  Singular Perturbation for the Discounted Continuous Control of Piecewise Deterministic Markov Processes , 2010, CDC 2010.

[47]  Gang George Yin,et al.  Regime Switching Stochastic Approximation Algorithms with Application to Adaptive Discrete Stochastic Optimization , 2004, SIAM J. Optim..

[48]  Gang George Yin Asymptotic expansions of option price under regime-switching diffusions with a fast-varying switching process , 2009, Asymptot. Anal..

[49]  W. Torrez,et al.  An Introduction to Stochastic Processes. , 1983 .

[50]  Qing Zhang,et al.  Continuous-Time Markov Chains and Applications , 1998 .

[51]  F. R. A. Hopgood,et al.  Machine Intelligence 6 , 1972, The Mathematical Gazette.

[52]  T. Chiang,et al.  A Limit Theorem for a Class of Inhomogeneous Markov Processes , 1989 .

[53]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[54]  W. Eckhaus Asymptotic Analysis of Singular Perturbations , 1979 .

[55]  R. Z. Khasminskij On the principle of averaging the Itov's stochastic differential equations , 1968, Kybernetika.

[56]  Gang George Yin,et al.  Asymptotic Expansions of Singularly Perturbed Systems Involving Rapidly Fluctuating Markov Chains , 1996, SIAM J. Appl. Math..

[57]  S. Campbell Singular perturbation of autonomous linear systems, II , 1978 .

[58]  G. Papanicolaou,et al.  A limit theorem for stochastic acceleration , 1980 .

[59]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[60]  Xuerong Mao,et al.  Stochastic Differential Equations With Markovian Switching , 2006 .

[61]  H. Soner Singular perturbations in manufacturing , 1993 .

[62]  S. Campbell,et al.  Singular Perturbation of Autonomous Linear Systems , 1979 .

[63]  T. Başar,et al.  H∞-Control of Markovian Jump Systems and Solutions to Associated Piecewise-Deterministic Differential Games , 1995 .

[64]  R. Has’minskiĭ On Stochastic Processes Defined by Differential Equations with a Small Parameter , 1966 .

[65]  H. Kushner,et al.  Asymptotic properties of distributed and communication stochastic approximation algorithms , 1987 .

[66]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[67]  George Yin,et al.  Singularly perturbed Markov chains: Limit results and applications , 2007, math/0703017.

[68]  George Yin,et al.  A Differential Delay Equation with Wideband Noise Perturbations , 1990 .

[69]  A. Bensoussan Perturbation Methods in Optimal Control , 1988 .

[70]  P. Chow,et al.  Additive control of stochastic linear systems with finite horizon , 1985 .

[71]  W. Wasow,et al.  Linear Turning Point Theory , 1985 .

[72]  Qing Zhang,et al.  Singularly Perturbed Markov Chains , 2000 .

[73]  Qing Zhang,et al.  Near optimality of stochastic control in systems with unknown parameter processes , 1994 .

[74]  R. Z. Khasminskii,et al.  Singularly Perturbed Switching Diffusions: Rapid Switchings and Fast Diffusions , 1999 .

[75]  G. Badowski,et al.  Occupation Measures of Singularly Perturbed Markov Chains with Absorbing States , 2000 .

[76]  Houmin Yan,et al.  Using stochastic optimization to determine threshold values for the control of unreliable manufacturing systems , 1994 .

[77]  G. Papanicolaou,et al.  Stability and Control of Stochastic Systems with Wide-band Noise Disturbances. I , 1978 .

[78]  Harold J. Kushner,et al.  Probability Methods for Approximations in Stochastic Control and for Elliptic Equations , 2012 .

[79]  T. Björk Finite dimensional optimal filters for a class of ltô- processes with jumping parameters , 1980 .

[80]  Gang George Yin,et al.  On nearly optimal controls of hybrid LQG problems , 1999, IEEE Trans. Autom. Control..

[81]  J. Filar,et al.  Algorithms for singularly perturbed limiting average Markov control problems , 1992 .

[82]  M. Pinsky,et al.  Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain , 1968 .

[83]  Reuben Hersh,et al.  Theory of random evolutions with applications to partial differential equations , 1971 .

[84]  T. Kurtz Approximation of Population Processes , 1987 .

[85]  Samuel Karlin,et al.  ELEMENTS OF STOCHASTIC PROCESSES , 1975 .

[86]  George Liberopoulos,et al.  Perturbation Analysis for the Design of Flexible Manufacturing System Flow Controllers , 1992, Oper. Res..

[87]  G. Yin,et al.  Hybrid Switching Diffusions: Properties and Applications , 2009 .

[88]  H. Soner Optimal control with state-space constraint I , 1986 .

[89]  D. Sworder,et al.  Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria , 1975 .

[90]  A. Skorokhod Asymptotic Methods in the Theory of Stochastic Differential Equations , 2008 .

[91]  R. Akella,et al.  Optimal control of production rate in a failure prone manufacturing system , 1985, 1985 24th IEEE Conference on Decision and Control.

[92]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[93]  W. A. Massey,et al.  Uniform acceleration expansions for Markov chains with time-varying rates , 1998 .

[94]  Marius Iosifescu,et al.  Finite Markov Processes and Their Applications , 1981 .

[95]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[96]  Wendell H. Fleming,et al.  Risk-Sensitive Production Planning of a Stochastic Manufacturing System , 1998 .

[97]  Z. Schuss Singular Perturbation Methods in Stochastic Differential Equations of Mathematical Physics , 1980 .

[98]  T. Basar,et al.  Random evolutionary time-scale decomposition in robust control of jump linear systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[99]  Qing Zhang,et al.  Finite state markovian decision processes with weak and strong interactions , 1996 .

[100]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[101]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[102]  M. Mariton,et al.  Jump Linear Systems in Automatic Control , 1992 .

[103]  P. Caines,et al.  Optimal adaptive LQG control for systems with finite state process parameters , 1985, The 23rd IEEE Conference on Decision and Control.

[104]  Hassan K. Khalil,et al.  Singular perturbations in systems and control , 1986 .

[105]  Herbert A. Simon,et al.  Aggregation of Variables in Dynamic Systems , 1961 .

[106]  R. Z. Khasminskii,et al.  Constructing asymptotic series for probability distributions of Markov chains with weak and strong interactions , 1997 .

[107]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[108]  N. Krasovskii,et al.  On the stability of systems with random parameters , 1960 .

[109]  F. Delebecque A Reduction Process for Perturbed Markov Chains , 1983 .

[110]  G. Yin,et al.  On a continuous time stochastic approximation problem , 1993 .

[111]  L. F. Martins,et al.  Routing and singular control for queueing networks in heavy traffic , 1990 .

[112]  R. Serfozo Introduction to Stochastic Networks , 1999 .

[113]  Harold J. Kushner,et al.  Nearly optimal state feedback controls for stochastic systems with wideband noise disturbances , 1987 .

[114]  R. Hersh,et al.  Random evolutions, markov chains, and systems of partial differential equations. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[116]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[117]  Qi He,et al.  Large Deviations for Two-Time-Scale Systems Driven by Nonhomogeneous Markov Chains and Associated Optimal Control Problems , 2011, SIAM J. Control. Optim..

[118]  George Yin,et al.  Asymptotic expansions of backward equations for two-time-scale Markov chains in continuous time , 2009 .

[119]  Xi-Ren Cao,et al.  Perturbation analysis of discrete event dynamic systems , 1991 .

[120]  C. Knessl On finite capacity processor-shared queues , 1990 .

[121]  El-Kébir Boukas,et al.  Manufacturing flow control and preventing maintenance: a stochastic control approach , 1988 .

[122]  Ching-Feng Kuo,et al.  Homogeneous denumerable Markov processes , 1988 .

[123]  Stanley B. Gershwin,et al.  An algorithm for the computer control of a flexible manufacturing system , 1983 .

[124]  H. Ishii Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations , 1984 .

[125]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[126]  A. M. Ilʹin,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[127]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[128]  A. T. Bharucha-Reid Elements of the theory of Markov processes and their applications , 1961 .

[129]  G. Kallianpur Stochastic Filtering Theory , 1980 .

[130]  Panganamala Ramana Kumar,et al.  Optimality of Zero-Inventory Policies for Unreliable Manufacturing Systems , 1988, Oper. Res..

[131]  Qing Zhang An asymptotic analysis of controlled diffusions with rapidly oscillating parameters , 1993 .

[132]  A. Il'in,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[133]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[134]  Qing Zhang,et al.  Multilevel Hierarchical Decision Making in Stochastic Marketing-Production Systems , 1995 .

[135]  Qing Zhang,et al.  Turnpike sets in stochastic manufacturing systems with finite time horizon , 1994 .

[136]  P. Kokotovic,et al.  Singular perturbations and asymptotic analysis in control systems , 1986 .

[137]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[138]  Sheldon M. Ross Discounted Dynamic Programming , 1983 .

[139]  N. Limnios,et al.  Diffusion Approximation with Equilibrium for Evolutionary Systems Switched by Semi-Markov Processes , 2005 .

[140]  M. Mariton,et al.  Robust jump linear quadratic control: A mode stabilizing solution , 1985 .

[141]  Mo Yu,et al.  A first order approximation forthe convergence of distributionsof the cox processes with , 1995 .

[142]  B. Matkowsky,et al.  The Exit Problem for Randomly Perturbed Dynamical Systems , 1977 .

[143]  Reuben Hersh,et al.  Random evolutions: A survey of results and problems , 1974 .

[144]  George Yin,et al.  Discrete-time singularly perturbed Markov chains: aggregation, occupation measures, and switching diffusion limit , 2003, Advances in Applied Probability.

[145]  Qing Zhang,et al.  Structural properties of Markov chains with weak and strong interactions , 1997 .

[146]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[147]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[148]  Petar V. Kokotovic,et al.  Singular perturbations and time-scale methods in control theory: Survey 1976-1983 , 1982, Autom..

[149]  W. Fleming,et al.  An Optimal Stochastic Production Planning Problem with Randomly Fluctuating Demand , 1987 .

[150]  George Yin,et al.  Stability of random-switching systems of differential equations , 2009 .

[151]  Donald L. Snyder,et al.  Random point processes , 1975 .

[152]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[153]  Jerzy A. Filar,et al.  Singularly perturbed Markov control problem: Limiting average cost , 1991 .

[154]  W. A. Thompson,et al.  Point Process Models with Applications to Safety and Reliability , 1988 .

[155]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[156]  Qing Zhang,et al.  A central limit theorem for singularly perturbed nonstationary finite state Markov chains , 1996 .

[157]  P.-J. Courtois,et al.  Decomposability: Queueing and Computer System Applications , 2014 .

[158]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[159]  P. Kokotovic Applications of Singular Perturbation Techniques to Control Problems , 1984 .

[160]  John N. Tsitsiklis,et al.  Statistical Multiplexing of Multiple Time-Scale Markov Streams , 1995, IEEE J. Sel. Areas Commun..

[161]  P. J. Courtois Decomposability of Queueing Networks , 1977 .

[162]  Gang George Yin,et al.  Two-Time-Scale Markov Chains and Applications to Quasi-Birth-Death Queues , 2004, SIAM J. Appl. Math..

[163]  S. Varadhan Large Deviations and Applications , 1984 .

[164]  Qing Zhang,et al.  Controlled Markov Chains with Weak and Strong Interactions: Asymptotic Optimality and Applications to Manufacturing , 1997 .

[165]  Juan Ye Optimal control of piecewise deterministic Markov processes. , 1990 .

[166]  Gang George Yin,et al.  Stability of hybrid dynamic systems containing singularly perturbed random processes , 2002, IEEE Trans. Autom. Control..

[167]  Michel Loève,et al.  Probability Theory I , 1977 .

[168]  François Delebecque,et al.  Optimal control of markov chains admitting strong and weak interactions , 1981, Autom..

[169]  Roe Goodman,et al.  Introduction to stochastic models , 1987 .

[170]  H. Kunita,et al.  On Square Integrable Martingales , 1967, Nagoya Mathematical Journal.

[171]  H. Chizeck,et al.  Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control , 1990 .

[172]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[173]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[174]  George Yin,et al.  Limit behavior of two-time-scale diffusions revisited , 2005 .

[175]  A. A. Pervozvanskiĭ,et al.  Theory of Suboptimal Decisions: Decomposition and Aggregation , 1988 .

[176]  Tamer Basar,et al.  H infintity control of large-scale jump linear systems via averaging and aggregation , 1999 .

[177]  Raymond Rishel Controlled wear process: modeling optimal control , 1991 .

[178]  Robert J. Elliott,et al.  Smoothing for a finite state Markov process , 1985 .

[179]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[180]  Martin V. Day,et al.  Boundary local time and small parameter exit problems with characteristic boundaries , 1989 .

[181]  M. Vangel System Reliability Theory: Models and Statistical Methods , 1996 .

[182]  Le Yi Wang,et al.  Robust Control of Hybrid Systems: Performance Guided Strategies , 1997, Hybrid Systems.

[183]  R. H. Liu,et al.  A Near-Optimal Selling Rule for a Two-Time-Scale Market Model , 2005, Multiscale Model. Simul..

[184]  Ulrich G. Haussmann,et al.  Discrete-time stochastic adaptive control with small observation noise , 1992 .

[185]  S. Pergamenshchikov,et al.  Two-Scale Stochastic Systems: Asymptotic Analysis and Control , 2010 .

[186]  Oswaldo Luiz V. Costa,et al.  Singularly Perturbed Discounted Markov Control Processes in a General State Space , 2012, SIAM J. Control. Optim..

[187]  V. G. Gaitsgori,et al.  Theory of Suboptimal Decisions , 1988 .

[188]  P. Brémaud Point Processes and Queues , 1981 .

[189]  M. Rosenblatt Markov Processes, Structure and Asymptotic Behavior , 1971 .

[190]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[191]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[192]  Mark H. Davis Markov Models and Optimization , 1995 .

[193]  C. Meunier,et al.  Multiphase Averaging for Classical Systems , 1988 .

[194]  Thomas G. Kurtz,et al.  Averaging for martingale problems and stochastic approximation , 1992 .

[195]  Bernard J. Matkowsky,et al.  A direct approach to the exit problem , 1990 .

[196]  Qing Zhang,et al.  Nearly-Optimal Asset Allocation in Hybrid Stock Investment Models , 2004 .

[197]  George Yin,et al.  On Transition Densities of Singularly Perturbed Diffusions with Fast and Slow Components , 1996, SIAM J. Appl. Math..

[198]  Gang George Yin Asymptotic properties of an adaptive beam former algorithm , 1989, IEEE Trans. Inf. Theory.

[199]  C. Knessl,et al.  Heavy-traffic analysis of a data-handling system with many sources , 1991 .

[200]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[201]  W. J. Anderson Continuous-Time Markov Chains , 1991 .

[202]  J. Quadrat,et al.  A unified view of aggregation and coherency in networks and Markov chains , 1984 .

[203]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[204]  Xianping Guo,et al.  Continuous-Time Markov Decision Processes: Theory and Applications , 2009 .

[205]  Rafail Z. Khasminskii,et al.  On Averaging Principles: An Asymptotic Expansion Approach , 2004, SIAM J. Math. Anal..

[206]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[207]  H. Kushner,et al.  Stochastic Approximation Methods for Systems Over an InfiniteHorizon , 1996 .

[208]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[209]  Xun Yu Zhou,et al.  Stochastic Linear Quadratic Regulators with Indefinite Control Weight Costs. II , 2000, SIAM J. Control. Optim..

[210]  Qing Zhang,et al.  Asymptotic properties of a singularly perturbed Markov chain with inclusion of transient states , 2000 .

[211]  Harold J. Kushner,et al.  Approximation and Weak Convergence Methods for Random Processes , 1984 .

[212]  Cyrus Derman,et al.  Finite State Markovian Decision Processes , 1970 .

[213]  Suresh P. Sethi,et al.  An Asymptotic Analysis of Hierarchical Control of Manufacturing Systems Under Uncertainty , 1991, Math. Oper. Res..

[214]  V. C. L. Hutson,et al.  Applications of Functional Analysis and Operator Theory , 1980 .

[215]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[216]  Gang George Yin,et al.  Markowitz's mean-variance portfolio selection with regime switching: from discrete-time models to their continuous-time limits , 2004, IEEE Transactions on Automatic Control.

[217]  X. Zhou Verification Theorems within the Framework of Viscosity Solutions , 1993 .

[218]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[219]  G. Yin,et al.  Hybrid Switching Diffusions , 2010 .

[220]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[221]  George Yin,et al.  Two-time-scale Jump-Diffusion Models with Markovian Switching Regimes , 2004 .

[222]  D. J. White Markov Decision Processes , 2006 .