Pairs of SAT Assignments and Clustering in Random Boolean Formulae

We investigate geometrical properties of the random K-satisfiability problem. For large enough K, we prove that there exists a region of clause density, below the satisfiability threshold, where SAT assignments are grouped into well separated clusters. This confirms the validity of the clustering scenario which is at the heart of the recent heuristic analysis of satisfiability using statistical physics analysis (the cavity method), and its algorithmic counterpart (the survey propagation algorithm). Our method relies on the study of pairs of SAT-assignments at a fixed distance. It uses elementary probabilistic arguments (first and second moment methods), and might be useful in other problems of computational and physical interest where similar phenomena appear.

[1]  R. Gallager Information Theory and Reliable Communication , 1968 .

[2]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[3]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[4]  Ming-Te Chao,et al.  Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the k satisfiability problem , 1990, Inf. Sci..

[5]  Nico M. Temme,et al.  Asymptotic estimates of Stirling numbers , 1993 .

[6]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[7]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[8]  Evangelos Kranakis,et al.  A better upper bound for the unsatisfiability threshold , 1996, Satisfiability Problem: Theory and Applications.

[9]  Yacine Boufkhad,et al.  A General Upper Bound for the Satisfiability Threshold of Random r-SAT Formulae , 1997, J. Algorithms.

[10]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[11]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[12]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[13]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[14]  A. Montanari The glassy phase of Gallager codes , 2001, cond-mat/0104079.

[15]  Cristopher Moore,et al.  The asymptotic order of the random k-SAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[16]  S. Franz,et al.  Dynamic phase transition for decoding algorithms. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Riccardo Zecchina,et al.  Coloring random graphs , 2002, Physical review letters.

[18]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[20]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[21]  Andrea Montanari,et al.  Instability of one-step replica-symmetry-broken phase in satisfiability problems , 2003, ArXiv.

[22]  A. Montanari,et al.  On the nature of the low-temperature phase in discontinuous mean-field spin glasses , 2003, cond-mat/0301591.

[23]  Rémi Monasson,et al.  A Study of Pure Random Walk on Random Satisfiability Problems with "Physical" Methods , 2003, SAT.

[24]  R. Zecchina,et al.  Polynomial iterative algorithms for coloring and analyzing random graphs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  R. Monasson,et al.  Rigorous decimation-based construction of ground pure states for spin-glass models on random lattices. , 2002, Physical review letters.

[26]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[27]  Yuval Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.

[28]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[29]  M. Mézard,et al.  Frozen glass phase in the multi-index matching problem. , 2004, Physical review letters.

[30]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[31]  Thierry Mora,et al.  Clustering of solutions in the random satisfiability problem , 2005, Physical review letters.

[32]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[33]  J Barré,et al.  Adaptability and "intermediate phase" in randomly connected networks. , 2005, Physical review letters.

[34]  Mauro Sellitto,et al.  Facilitated spin models on Bethe lattice: Bootstrap percolation, mode-coupling transition and glassy dynamics , 2005 .

[35]  M. Mézard,et al.  Threshold values of random K-SAT from the cavity method , 2006 .