Ill-posed problems in early vision
暂无分享,去创建一个
[1] J. Hadamard. Sur les problemes aux derive espartielles et leur signification physique , 1902 .
[2] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.
[3] L. Kantorovich,et al. Functional analysis in normed spaces , 1952 .
[4] R. Courant,et al. Methods of Mathematical Physics, Vol. I , 1954 .
[5] R. Thom. Quelques propriétés globales des variétés différentiables , 1954 .
[6] Fritz John,et al. Continuous dependence on data for solutions of partial differential equations with a prescribed bound , 1960 .
[7] A Tikhonov,et al. Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .
[8] I. Miller. Probability, Random Variables, and Stochastic Processes , 1966 .
[9] V. Ivanov,et al. The approximate solution of operator equations of the first kind , 1966 .
[10] V. Morozov. On the solution of functional equations by the method of regularization , 1966 .
[11] C. Reinsch. Smoothing by spline functions , 1967 .
[12] J. L. Walsh,et al. The theory of splines and their applications , 1969 .
[13] Berthold K. P. Horn. SHAPE FROM SHADING: A METHOD FOR OBTAINING THE SHAPE OF A SMOOTH OPAQUE OBJECT FROM ONE VIEW , 1970 .
[14] Thomas O. Binford,et al. On Boundary Detection , 1970 .
[15] K. Miller. Least Squares Methods for Ill-Posed Problems with a Prescribed Bound , 1970 .
[16] M. Nashed. Generalized Inverses, Normal Solvability, and Iteration for Singular Operator Equations , 1971 .
[17] Valentin F. Turchin,et al. The use of mathematical-statistics methods in the solution of incorrectly posed problems , 1971 .
[18] M. Nashed. Differentiability and Related Properties of Nonlinear Operators: Some Aspects of the Role of Differentials in Nonlinear Functional Analysis , 1971 .
[19] M. Z. Nashed,et al. On the Convergence of the Conjugate Gradient Method for Singular Linear Operator Equations , 1972 .
[20] J. Franklin. On Tikhonov’s method for ill-posed problems , 1974 .
[21] Berthold K. P. Horn. Obtaining shape from shading information , 1989 .
[22] Jean Duchon,et al. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .
[23] Tomaso Poggio,et al. A Theory of Human Stereo Vision , 1977 .
[24] G. Wahba. Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .
[25] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[26] Fred M. Dickey,et al. An Optimal Frequency Domain Filter for Edge Detection in Digital Pictures , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[27] B K Horn,et al. Calculating the reflectance map. , 1979, Applied optics.
[28] Bruno O. Shubert,et al. Random variables and stochastic processes , 1979 .
[29] T. Poggio,et al. A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[30] G. Wahba,et al. Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .
[31] D Marr,et al. Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[32] G. Wahba. Ill Posed Problems: Numerical and Statistical Methods for Mildly, Moderately and Severely Ill Posed Problems with Noisy Data. , 1980 .
[33] Paul Virilio,et al. Vision machine , 1981, Nature.
[34] Berthold K. P. Horn,et al. Hill shading and the reflectance map , 1981, Proceedings of the IEEE.
[35] Katsushi Ikeuchi,et al. Determining Surface Orientations of Specular Surfaces by Using the Photometric Stereo Method , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[36] Berthold K. P. Horn,et al. Determining Optical Flow , 1981, Other Conferences.
[37] A. Roger,et al. Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem , 1981 .
[38] Michael Brady. MIT Progress in Understanding Images , 1982 .
[39] Demetri Terzopoulos. Multi-Level Reconstruction of Visual Surfaces: Variational Principles and Finite Element Representations , 1982 .
[40] W E Grimson,et al. A computational theory of visual surface interpolation. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[41] Alan L. Yuille,et al. The Smoothest Velocity Field and Token Matching , 1983 .
[42] J. Canny. Finding Edges and Lines in Images , 1983 .
[43] Demetri Terzopoulos,et al. Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..
[44] J. Marroquín. Surface Reconstruction Preserving Discontinuities , 1984 .
[45] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[46] C. W. Groetsch,et al. The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .
[47] E. Hildreth. The computation of the velocity field , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[48] V. A. Morozov,et al. Methods for Solving Incorrectly Posed Problems , 1984 .
[49] Ellen C. Hildreth,et al. Measurement of Visual Motion , 1984 .
[50] Alan L. Yuille. The Smoothest Velocity Field Token Matching Schemes , 1984, ECAI.
[51] Demetri Terzopoulos,et al. Multiresolution computation of visible-surface representations , 1984 .
[52] Tomaso Poggio. Integrating vision modules with coupled MRFs , 1985 .
[53] Tomaso Poggio,et al. Computational vision and regularization theory , 1985, Nature.
[54] Mario Bertero,et al. Linear inverse problems with discrete data. I. General formulation and singular system analysis , 1985 .
[55] Demetri Terzopoulos,et al. Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[56] John R. Kender,et al. Visual Surface Reconstruction Using Sparse Depth Data , 1986, CVPR 1986.
[57] Andrew Blake,et al. Weak Continuity Constraints Generate Uniform Scale-Space Descriptions of Plane Curves , 1986, ECAI.
[58] Tomaso A. Poggio,et al. On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[59] M. Bertero. Regularization methods for linear inverse problems , 1986 .
[60] Iterative inversion of experimental data in weighted spaces , 1986 .
[61] Andrew Blake,et al. Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.
[62] Tomaso A. Poggio,et al. An Optimal Scale for Edge Detection , 1988, IJCAI.
[63] Tomaso Poggio,et al. Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .
[64] L. Payne,et al. Improperly Posed Problems in Partial Differential Equations , 1987 .
[65] T. Poggio,et al. Visual Integration and Detection of Discontinuities: The Key Role of Intensity Edges , 1987 .
[66] David Lee,et al. Some computational aspects of low-level computer vision , 1988, Proc. IEEE.
[67] David Lee,et al. One-Dimensional Regularization with Discontinuities , 1988, IEEE Trans. Pattern Anal. Mach. Intell..
[68] A. Verri,et al. Mathematical properties of the 2-D motion field: from singular points to motion parameters , 1989, [1989] Proceedings. Workshop on Visual Motion.
[69] Tomaso A. Poggio,et al. Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..