Multiobjective Genetic Fuzzy Systems

[1]  Shigeo Abe,et al.  Pattern Classification: Neuro-fuzzy Methods and Their Comparison , 2012 .

[2]  Francisco Herrera,et al.  Multiobjective genetic fuzzy rule selection of single granularity-based fuzzy classification rules and its interaction with the lateral tuning of membership functions , 2011, Soft Comput..

[3]  Carlos A. Coello Coello,et al.  On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem , 2011, IEEE Transactions on Evolutionary Computation.

[4]  Oscar Castillo,et al.  Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms , 2011, Soft Comput..

[5]  Francisco Herrera,et al.  Integration of an Index to Preserve the Semantic Interpretability in the Multiobjective Evolutionary Rule Selection and Tuning of Linguistic Fuzzy Systems , 2010, IEEE Transactions on Fuzzy Systems.

[6]  Beatrice Lazzerini,et al.  Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets , 2010, Soft Comput..

[7]  Kay Chen Tan,et al.  A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design , 2010, Eur. J. Oper. Res..

[8]  Shawki Areibi,et al.  Strength Pareto Particle Swarm Optimization and Hybrid EA-PSO for Multi-Objective Optimization , 2010, Evolutionary Computation.

[9]  Chia-Feng Juang,et al.  Designing Fuzzy-Rule-Based Systems Using Continuous Ant-Colony Optimization , 2010, IEEE Transactions on Fuzzy Systems.

[10]  José M. Alonso,et al.  Looking for a good fuzzy system interpretability index: An experimental approach , 2009, Int. J. Approx. Reason..

[11]  Beatrice Lazzerini,et al.  Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework , 2009, Int. J. Approx. Reason..

[12]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[13]  Chia-Feng Juang,et al.  A self-generating fuzzy system with ant and particle swarm cooperative optimization , 2009, Expert Syst. Appl..

[14]  Alessio Botta,et al.  Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index , 2008, Soft Comput..

[15]  Hisao Ishibuchi,et al.  Parallel distributed genetic fuzzy rule selection , 2008, Soft Comput..

[16]  A. Rama Mohan Rao,et al.  Multi-objective optimal design of fuzzy logic controller using a self configurable swarm intelligence algorithm , 2008 .

[17]  Hannu Koivisto,et al.  Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms , 2008, Int. J. Approx. Reason..

[18]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[19]  Satchidananda Dehuri,et al.  Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases , 2008, Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases.

[20]  Chia-Feng Juang,et al.  Ant Colony Optimization Algorithm for Fuzzy Controller Design and Its FPGA Implementation , 2008, IEEE Transactions on Industrial Electronics.

[21]  Manoj Kumar Tiwari,et al.  Interactive Particle Swarm: A Pareto-Adaptive Metaheuristic to Multiobjective Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[22]  Francisco Herrera,et al.  Genetic fuzzy systems: taxonomy, current research trends and prospects , 2008, Evol. Intell..

[23]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[24]  Francisco Herrera,et al.  A Multi-Objective Genetic Algorithm for Tuning and Rule Selection to Obtain Accurate and Compact Linguistic Fuzzy Rule-Based Systems , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[25]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[26]  Sam Kwong,et al.  Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection , 2007, Pattern Recognition.

[27]  Antonio F. Gómez-Skarmeta,et al.  Improving interpretability in approximative fuzzy models via multiobjective evolutionary algorithms , 2007, EUSFLAT Conf..

[28]  Hisao Ishibuchi,et al.  Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design , 2007, Int. J. Hybrid Intell. Syst..

[29]  Z. Xing,et al.  On Generating Fuzzy Systems based on Pareto Multi-objective Cooperative Coevolutionary Algorithm , 2007 .

[30]  Hisao Ishibuchi,et al.  Multiobjective Genetic Fuzzy Systems: Review and Future Research Directions , 2007, 2007 IEEE International Fuzzy Systems Conference.

[31]  Hisao Ishibuchi,et al.  Relation between Pareto-Optimal Fuzzy Rules and Pareto-Optimal Fuzzy Rule Sets , 2007, 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making.

[32]  Beatriz de la Iglesia,et al.  Rule Induction for Classification Using Multi-objective Genetic Programming , 2007, EMO.

[33]  Ian Griffin,et al.  A Comparative Study of Progressive Preference Articulation Techniques for Multiobjective Optimisation , 2007, EMO.

[34]  Hisao Ishibuchi,et al.  Optimization of Scalarizing Functions Through Evolutionary Multiobjective Optimization , 2007, EMO.

[35]  Kay Chen Tan,et al.  A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[36]  Héctor Pomares,et al.  Improving the accuracy while preserving the interpretability of fuzzy function approximators by means of multi-objective evolutionary algorithms , 2007, Int. J. Approx. Reason..

[37]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[38]  Beatriz de la Iglesia,et al.  Rule Induction Using Multi-Objective Metaheuristics: Encouraging Rule Diversity , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[39]  Hisao Ishibuchi,et al.  Finding Simple Fuzzy Classification Systems with High Interpretability Through Multiobjective Rule Selection , 2006, KES.

[40]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[41]  Lourdes Araujo,et al.  Multiobjective Genetic Programming for Natural Language Parsing and Tagging , 2006, PPSN.

[42]  Qingfu Zhang,et al.  A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages , 2006, PPSN.

[43]  Hisao Ishibuchi,et al.  Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers , 2006, Int. J. Hybrid Intell. Syst..

[44]  Hyun-Su Kim,et al.  Fuzzy Control of Base‐Isolation System Using Multi‐Objective Genetic Algorithm , 2006, Comput. Aided Civ. Infrastructure Eng..

[45]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[46]  Mehmet Kaya,et al.  Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules , 2006, Soft Comput..

[47]  Victor J. Rayward-Smith,et al.  The application and effectiveness of a multi-objective metaheuristic algorithm for partial classification , 2006, Eur. J. Oper. Res..

[48]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[49]  Joshua D. Knowles,et al.  Improvements to the scalability of multiobjective clustering , 2005, 2005 IEEE Congress on Evolutionary Computation.

[50]  Joshua D. Knowles,et al.  Multiobjective clustering around medoids , 2005, 2005 IEEE Congress on Evolutionary Computation.

[51]  B. V. Babu,et al.  Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor , 2005 .

[52]  Christian Setzkorn,et al.  On the use of multi-objective evolutionary algorithms for the induction of fuzzy classification rule systems. , 2005, Bio Systems.

[53]  Hisao Ishibuchi,et al.  Rule weight specification in fuzzy rule-based classification systems , 2005, IEEE Transactions on Fuzzy Systems.

[54]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[55]  Shiyou Yang,et al.  A particle swarm optimization-based method for multiobjective design optimizations , 2005, IEEE Transactions on Magnetics.

[56]  Francisco Herrera,et al.  Stratification for scaling up evolutionary prototype selection , 2005, Pattern Recognit. Lett..

[57]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.

[58]  Kim-Fung Man,et al.  Agent-based evolutionary approach for interpretable rule-based knowledge extraction , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[59]  Hisao Ishibuchi,et al.  Hybridization of fuzzy GBML approaches for pattern classification problems , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[60]  Bernhard Sendhoff,et al.  Evolutionary Multi-objective Optimization for Simultaneous Generation of Signal-Type and Symbol-Type Representations , 2005, EMO.

[61]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[62]  Luiz Eduardo Soares de Oliveira,et al.  Multi-objective Genetic Algorithms to Create Ensemble of Classifiers , 2005, EMO.

[63]  Joshua D. Knowles,et al.  Exploiting the Trade-off - The Benefits of Multiple Objectives in Data Clustering , 2005, EMO.

[64]  Victor J. Rayward-Smith,et al.  Developments on a Multi-objective Metaheuristic (MOMH) Algorithm for Finding Interesting Sets of Classification Rules , 2005, EMO.

[65]  Ralf Mikut,et al.  Interpretability issues in data-based learning of fuzzy systems , 2005, Fuzzy Sets Syst..

[66]  Chi-Jui Wu,et al.  Optimal multiobjective planning of large-scale passive harmonic filters using hybrid differential evolution method considering parameter and loading uncertainty , 2005 .

[67]  María José del Jesús,et al.  Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction , 2005, IEEE Transactions on Fuzzy Systems.

[68]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[69]  Lakhmi C. Jain,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2004, Lecture Notes in Computer Science.

[70]  Hisao Ishibuchi,et al.  Classification and modeling with linguistic information granules - advanced approaches to linguistic data mining , 2004, Advanced information processing.

[71]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[72]  Richard M. Everson,et al.  Intelligent Data Engineering and Automated Learning – IDEAL 2004 , 2004, Lecture Notes in Computer Science.

[73]  Hisao Ishibuchi,et al.  Evolutionary Multiobjective Knowledge Extraction for High-Dimensional Pattern Classification Problems , 2004, PPSN.

[74]  Joshua D. Knowles,et al.  Evolutionary Multiobjective Clustering , 2004, PPSN.

[75]  Xin Yao,et al.  DIVACE: Diverse and Accurate Ensemble Learning Algorithm , 2004, IDEAL.

[76]  Bernhard Sendhoff,et al.  Neural network regularization and ensembling using multi-objective evolutionary algorithms , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[77]  Bhabesh Nath,et al.  Multi-objective rule mining using genetic algorithms , 2004, Inf. Sci..

[78]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[79]  Liang-Hsuan Chen,et al.  An intelligent control system with a multi-objective self-exploration process , 2004, Fuzzy Sets Syst..

[80]  W. Renhart,et al.  Pareto optimality and particle swarm optimization , 2004, IEEE Transactions on Magnetics.

[81]  Peter J. Fleming,et al.  Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop , 2004, Eng. Appl. Artif. Intell..

[82]  U. Aickelin,et al.  Parallel Problem Solving from Nature - PPSN VIII , 2004, Lecture Notes in Computer Science.

[83]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[84]  V. J. Rayward-Smith,et al.  Data mining rules using multi-objective evolutionary algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[85]  Hussein A. Abbass,et al.  Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[86]  Hussein A. Abbass,et al.  Speeding Up Backpropagation Using Multiobjective Evolutionary Algorithms , 2003, Neural Computation.

[87]  Héctor Pomares,et al.  Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation , 2003, IEEE Trans. Neural Networks.

[88]  Xavier Llorà,et al.  Bounding the Effect of Noise in Multiobjective Learning Classifier Systems , 2003, Evolutionary Computation.

[89]  Luiz Eduardo Soares de Oliveira,et al.  A Methodology for Feature Selection Using Multiobjective Genetic Algorithms for Handwritten Digit String Recognition , 2003, Int. J. Pattern Recognit. Artif. Intell..

[90]  Luiz Eduardo Soares de Oliveira,et al.  Feature selection for ensembles:a hierarchical multi-objective genetic algorithm approach , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[91]  F. Herrera,et al.  Accuracy Improvements in Linguistic Fuzzy Modeling , 2003 .

[92]  Hisao Ishibuchi,et al.  Evolutionary Multiobjective Optimization for Generating an Ensemble of Fuzzy Rule-Based Classifiers , 2003, GECCO.

[93]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[94]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[95]  Francisco Herrera,et al.  Linguistic modeling with hierarchical systems of weighted linguistic rules , 2003, Int. J. Approx. Reason..

[96]  Dr. Alex A. Freitas Data Mining and Knowledge Discovery with Evolutionary Algorithms , 2002, Natural Computing Series.

[97]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[98]  Oscar Cordón,et al.  Evolutionary Learning of Boolean Queries by Multiobjective Genetic Programming , 2002, PPSN.

[99]  Luiz Eduardo Soares de Oliveira,et al.  Feature selection using multi-objective genetic algorithms for handwritten digit recognition , 2002, Object recognition supported by user interaction for service robots.

[100]  Qiang Shen,et al.  From approximative to descriptive fuzzy classifiers , 2002, IEEE Trans. Fuzzy Syst..

[101]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[102]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[103]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[104]  Tzung-Pei Hong,et al.  Trade-off Between Computation Time and Number of Rules for Fuzzy Mining from Quantitative Data , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[105]  Magne Setnes,et al.  Compact and transparent fuzzy models and classifiers through iterative complexity reduction , 2001, IEEE Trans. Fuzzy Syst..

[106]  Hisao Ishibuchi,et al.  Three-objective genetics-based machine learning for linguistic rule extraction , 2001, Inf. Sci..

[107]  F. Gomide,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[108]  Antonio González Muñoz,et al.  Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm , 2001, Fuzzy Sets Syst..

[109]  Serge Guillaume,et al.  Designing fuzzy inference systems from data: An interpretability-oriented review , 2001, IEEE Trans. Fuzzy Syst..

[110]  Lothar Thiele,et al.  Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[111]  Antonio F. Gómez-Skarmeta,et al.  Accurate, Transparent, and Compact Fuzzy Models for Function Approximation and Dynamic Modeling through Multi-objective Evolutionary Optimization , 2001, EMO.

[112]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[113]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[114]  Magne Setnes,et al.  GA-fuzzy modeling and classification: complexity and performance , 2000, IEEE Trans. Fuzzy Syst..

[115]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[116]  Ludmila I. Kuncheva,et al.  How good are fuzzy If-Then classifiers? , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[117]  C. Emmanouilidis,et al.  A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[118]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[119]  Hisao Ishibuchi,et al.  Effect of rule weights in fuzzy rule-based classification systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[120]  Yaochu Jin,et al.  Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement , 2000, IEEE Trans. Fuzzy Syst..

[121]  Hisao Ishibuchi,et al.  Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes , 1999, IEEE Trans. Ind. Electron..

[122]  Bernhard Sendhoff,et al.  On generating FC3 fuzzy rule systems from data using evolution strategies , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[123]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[124]  M. Lozano,et al.  MOGUL: A methodology to obtain genetic fuzzy rule‐based systems under the iterative rule learning approach , 1999 .

[125]  Hisao Ishibuchi,et al.  Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[126]  Roberto J. Bayardo,et al.  Mining the most interesting rules , 1999, KDD '99.

[127]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Man Mach. Stud..

[128]  Eric Bauer,et al.  An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.

[129]  Rudolf Kruse,et al.  Obtaining interpretable fuzzy classification rules from medical data , 1999, Artif. Intell. Medicine.

[130]  Hisao Ishibuchi,et al.  Voting in fuzzy rule-based systems for pattern classification problems , 1999, Fuzzy Sets Syst..

[131]  Antonio González Muñoz,et al.  SLAVE: a genetic learning system based on an iterative approach , 1999, IEEE Trans. Fuzzy Syst..

[132]  John Yen,et al.  Improving the interpretability of TSK fuzzy models by combining global learning and local learning , 1998, IEEE Trans. Fuzzy Syst..

[133]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[134]  Hiroshi Motoda,et al.  Feature Selection for Knowledge Discovery and Data Mining , 1998, The Springer International Series in Engineering and Computer Science.

[135]  Uzay Kaymak,et al.  Similarity measures in fuzzy rule base simplification , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[136]  Rudolf Kruse,et al.  How the learning of rule weights affects the interpretability of fuzzy systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[137]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[138]  Magne Setnes,et al.  Rule-based modeling: precision and transparency , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[139]  Francisco Herrera,et al.  A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples , 1997, Int. J. Approx. Reason..

[140]  Shigeo Abe,et al.  A fuzzy classifier with ellipsoidal regions , 1997, IEEE Trans. Fuzzy Syst..

[141]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[142]  Hisao Ishibuchi,et al.  Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems , 1997, Fuzzy Sets Syst..

[143]  Antonio F. Gómez-Skarmeta,et al.  A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling , 1997, IEEE Trans. Fuzzy Syst..

[144]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[145]  Bart Kosko,et al.  Fuzzy function approximation with ellipsoidal rules , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[146]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[147]  Hisao Ishibuchi,et al.  Selecting linguistic classification rules by two-objective genetic algorithms , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[148]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[149]  T. Fukuda,et al.  Self-tuning fuzzy modeling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm , 1995 .

[150]  J. Mendel Fuzzy logic systems for engineering: a tutorial , 1995, Proc. IEEE.

[151]  Shigeo Abe,et al.  A method for fuzzy rules extraction directly from numerical data and its application to pattern classification , 1995, IEEE Trans. Fuzzy Syst..

[152]  Cheng-Jian Lin,et al.  An ART-based fuzzy adaptive learning control network , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[153]  Hideo Tanaka,et al.  Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms , 1994, CVPR 1994.

[154]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[155]  Alexandre Parodi,et al.  A New Approach to Fuzzy Classifier Systems , 1993, ICGA.

[156]  David S. Feldman,et al.  Fuzzy Network Synthesis with Genetic Algorithms , 1993, ICGA.

[157]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[158]  C. L. Karr,et al.  Fuzzy control of pH using genetic algorithms , 1993, IEEE Trans. Fuzzy Syst..

[159]  H. Ishibuchi,et al.  Distributed representation of fuzzy rules and its application to pattern classification , 1992 .

[160]  Yoshiki Uchikawa,et al.  On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm , 1992, IEEE Trans. Neural Networks.

[161]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks. I. Classification , 1992, IEEE Trans. Neural Networks.

[162]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[163]  L. Wang,et al.  Fuzzy systems are universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[164]  B. Kosko Fuzzy systems as universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[165]  Chin-Teng Lin,et al.  Neural-Network-Based Fuzzy Logic Control and Decision System , 1991, IEEE Trans. Computers.

[166]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[167]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1991, Proceedings of the 1991 IEEE International Symposium on Intelligent Control.

[168]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[169]  Charles L. Karr,et al.  Design of a cart-pole balancing fuzzy logic controller using a genetic algorithm , 1991, Defense, Security, and Sensing.

[170]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[171]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. II , 1990, IEEE Trans. Syst. Man Cybern..

[172]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[173]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[174]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[175]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[176]  E. H. Mamdani,et al.  Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis , 1976, IEEE Transactions on Computers.

[177]  Magdalene Marinaki,et al.  Fuzzy control optimized by a Multi-Objective Particle Swarm Optimization algorithm for vibration suppression of smart structures , 2011 .

[178]  Hisao Ishibuchi,et al.  Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers , 2008, Computational Intelligence: A Compendium.

[179]  Jesús Alcalá-Fdez,et al.  Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation , 2007, Int. J. Approx. Reason..

[180]  Hisao Ishibuchi,et al.  Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning , 2007, Int. J. Approx. Reason..

[181]  Yaochu Jin,et al.  Multi-Objective Machine Learning , 2006, Studies in Computational Intelligence.

[182]  Yaochu Jin,et al.  Knowledge incorporation in evolutionary computation , 2005 .

[183]  Kim-Fung Man,et al.  Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction , 2005, Fuzzy Sets Syst..

[184]  X. Yao,et al.  Evolutionary framework for the construction of diverse hybrid ensembles , 2005, ESANN.

[185]  Francisco Herrera,et al.  Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions , 2005 .

[186]  Hisao Ishibuchi,et al.  Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining , 2004, Fuzzy Sets Syst..

[187]  Yi-Chung Hu,et al.  Finding fuzzy classification rules using data mining techniques , 2003, Pattern Recognit. Lett..

[188]  Luis Magdalena,et al.  A Multiobjective Genetic Learning Process for joint Feature Selection and Granularity and Contexts Learning in Fuzzy Rule-Based Classification Systems , 2003 .

[189]  J. Casillas Interpretability issues in fuzzy modeling , 2003 .

[190]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[191]  Luis Magdalena,et al.  Interpretability Improvements to Find the Balance Interpretability-Accuracy in Fuzzy Modeling: An Overview , 2003 .

[192]  Ferenc Szeifert,et al.  Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization , 2003, Int. J. Approx. Reason..

[193]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[194]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[195]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[196]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[197]  María José del Jesús,et al.  A proposal on reasoning methods in fuzzy rule-based classification systems , 1999, Int. J. Approx. Reason..

[198]  Matthew A. Kupinski,et al.  Multiobjective Genetic Optimization of Diagnostic Classifiers with Implications for Generating ROC Curves , 1999, IEEE Trans. Medical Imaging.

[199]  Magne Setnes,et al.  Supervised fuzzy clustering for rule extraction , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[200]  Detlef Nauck,et al.  Foundations Of Neuro-Fuzzy Systems , 1997 .

[201]  P. K. Simpson Fuzzy Min-Max Neural Networks-Part 1 : Classification , 1992 .

[202]  C. L. Karr Design of an Adaptive Fuzzy Logic Controller Using a Genetic Algorithm , 1991, ICGA.

[203]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[204]  Manuel Valenzuela-Rendón,et al.  The Fuzzy Classifier System: A Classifier System for Continuously Varying Variables , 1991, ICGA.

[205]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[206]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[207]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[208]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[209]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[210]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[211]  J. Dunn A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .